简介:研究非齐次边界条件下,含有p—Laplacian算子的微分方程解的存在性,应用上下解方法,得到边值问题可解性的充分条件.
简介:研究了严格凸Banach空间中非空间凸子集上拟非扩展映象的不动点的迭代逼近问题,主要证明了:设E是严格凸Banach空间,K为E的闭凸子集,T:K→K为连续拟非扩展映象.进一步假设T(K)包含于K的一个紧子集之中,迭代地定义序列{xn}∞n=1如下:(IS)yn=(1-βn)xn+βnTxn,n≥1,xn+1=(1-αn)xn+αnTyn,n≥1,其中{αn}和{βn}满足一定的条件,则{xn}强收敛于T的某个不动点.