学科分类
/ 2
30 个结果
  • 简介:采用由闭轨分岔出极限环的思路给出了伪振子分析法的严格证明,所得结果推广了伪振子分析法的主要结论,使其能够应用于高阶Hopf分岔问题,其中分岔周期解的稳定性分析需要高于三次的非线性项.论文给出两个数值算例检验了伪振子分析法的有效性.

  • 标签: 伪振子分析法 HOPF分岔 时滞微分方程 极限环
  • 简介:提出一种模糊神经网络控制器并用于机器人轨迹跟踪控制.这种模糊神经网络利用B样条基函数作为隶属函数,可在线根据误差调整隶属函数的形状,使模糊神经网络具有更强的学习和适应能力.仿真与实验结果表明这种网络能很好的用于机器人的轨迹跟踪控制,具有很好的性能.

  • 标签: 机器人 模糊神经网络控制器 轨迹跟踪控制 应用 B样条基函数 隶属函数
  • 简介:主要研究了具有不对中轴承支承的柔性多转子耦合系统的动力学建模和非线性动力学行为.首先在短轴承假设、小轴承的不对中量和圆盘不平衡量等几个基本假设条件下,考虑了转子的柔度、不对中轴承的非线性油膜力和圆盘的不平衡等因素后,建立了一个具有轴承不对的10自由度多跨转子系统非线性动力学模型;最后采用数值方法研究了系统的非线性动力学行为.结果显示转子在低转速时,为同步的周期1运动,随着转速的提高,出现整数倍频的振动分量;在转速较高时,转子运动回复到周期1运动状态.

  • 标签: 多跨柔性转子 轴承不对中 非线性油膜力 非线性动力学
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用
  • 简介:概括介绍了ADAM/CAR与EASY5仿真软件在车辆主动悬架研究的应用,通过ADAM/CAR建立了整车主动悬架的多体动力学模型,采用EASY5软件设计了主动悬架的液压系统,并提出了ADAM/CAR与EASY5联合仿真的方案,对联合仿真技术应用于主动悬架进行了可行性分析.同时,车辆平顺性的仿真结果表明,采用液压主动悬架的车辆与采用被动悬架的车辆相比平顺性有了明显的改善.

  • 标签: ADAM/CAR EASY5 联合仿真 主动悬架 平顺性
  • 简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.

  • 标签: Chebyshev-Gauss伪谱法 欠驱动航天器 姿态机动 最优控制
  • 简介:研究了一类二自由度模型在高速切削过程的颤振运动.首先建立了二自由度切削运动模型,得到了四维的非线性分段方程,然后研究切削力的动态分量对切削颤振的影响,应用特征值法解析建立了系统发生Hopf分岔的临界条件.结果表明,当分岔参数经过某一临界值时发生Hopf分岔.最后,通过数值方法对该系统进行了数值模拟,从而验证了该临界条件的有效性.

  • 标签: 颤振 高速切削 非光滑系统 HOPF分岔
  • 简介:讨论了一类参数与时滞相关的时滞系统的鲁棒稳定性.在"稳定性切换几何判据法"的基础上提出了"稳定性切换点法",使用该方法可得到相应方程零解稳定的参数变化区域.针对向日葵方程这一实际例子,利用文中所提出的方法并结合Maple软件作图可以容易地得到稳定性区域和不稳定性区域以及两区域的分界线、Hopf分岔点等;进一步通过对时滞大小的调控得到方程零解的鲁棒稳定性.

  • 标签: 时滞 稳定性切换 切换点 稳定性区域 鲁棒稳定性
  • 简介:Pre-Botzinger复合体中兴奋性神经元节律性簇放电与呼吸节律的产生关系密切.泄漏电流对神经元簇放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型簇放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解.

  • 标签: 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律
  • 简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶心差分格式,将两者相结合,得到FPK方程的四阶心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 可朗克-尼考尔逊隐式差分格式