简介:采用浸渍法制备了不同La掺杂量的Ni—SiO2催化剂,研究了La掺杂量对Ni—SiO2催化剂的Ni活性金属粒径、还原性能、甲烷催化裂解寿命以及反应后生成碳纤维的影响。结果表明:La、Ni物质的量比由0增长至0.3时,Ni-SiO2催化剂的寿命显著提高,而当La、Ni物质的量比由0.3增长至0.6时,催化剂寿命在一定程度上略有降低;La、Ni物质的量比由0增长至0.6时,还原后催化剂Ni金属的平均粒径从26.43nm不断降低至10.57nm。不同La掺杂量Ni—SiO2催化剂甲烷催化裂解过程中Ni金属平均粒径变化趋势明显不同,n(La):n(Ni)=0的Ni—SiO2催化剂随反应进行Ni金属平均粒径不断降低,而n(La):n(Ni)=0.3的Ni—SiO2催化剂随反应进行Ni金属平均粒径则不断升高。碳纤维形态受掺La掺杂量影响较大,随La、Ni物质的量比由0增长至0.3,反应过程中生成的碳纤维管径变粗,而随La、Ni物质的量比由0.3增长至0.6,碳纤维变短。
简介:以钛酸四丁酯(TBOT)为前驱体,三嵌段共聚物(P123)为模板剂,用溶胶一凝胶法合成了孔径分布均匀的介孔TiO2;用小角X射线衍射(SAXRD)、X射线粉末衍射(XRD)、透射电子显微镜(TEM)和红外光谱(FT-IR)等分析手段对产物结构和光学性能进行了表征。结果表明:TiO2为介孔结构,在低于400℃煅烧时介孔结构稳定性高,孔径均匀分布,晶型全部为锐钛矿。光催化降解对氯苯酚表明介孔TiO2具有优异的催化性能,在250W紫外灯照射2h后,氯化有机物中的苯环特征峰完全消失,降解率可达95.3%。
简介:制备了一种新颖的反应型阻燃剂,(4-二乙氧基磷酰基羟苯氧基)(4-羟基苯氧基)环三磷腈(EPPZ),其特征通过FTIR,^31P-NMR,^1H-NMR分析表征,实验制备的(脂肪族磷酸酯)环三磷腈含有不同的磷组分。环三磷腈聚氨酯(EPPZ-PU)由EPPZ、聚丙二醇、1,4-丁二醇、2,4-甲苯二异氰酸酯合成,其特征通过FTIR、TGA、DSC、限定氧指数(LOI)和拉伸强度来表征。结论证明,与纯的聚氨酯相比,用此方法合成的含EPPZ聚氨酯具有较高的玻璃化转变温度,较高的拉伸强度,较低的降解温度,较高的残炭率。聚氨酯在不同降解阶段的活化能用Ozawa方法计算。随EPPZ含量增加,聚氨酯LOI值增加,并且表现出明显的燃-熄行为。实验同时发现聚氨酯的阻燃作用最初发生在凝聚相。
简介:在液相环境中,利用纳秒(ns)脉冲激光器轰击消融铬掺杂ZnSe(Cr^2+:ZnSe)微米颗粒,制备出Cr^2+:ZnSe纳米粒子,扫描电镜以及X射线衍射检测,结果显示,制备所得的粒子为平均尺寸为50nm的ZnSe闪锌矿结构纳米粒子。基于Cr^2+:ZnSe纳米粒子,观察到中心波长为2180nm、阈值为0.4mJ/pulse的随机激光效应。相比于Cr^2+:ZnSe晶体激光器,纳米粒子随机激光的中心波长发生了约170nm的蓝移,Cr^2+:ZnSe纳米粒子的光致发光寿命也比Cr^2+:ZnSe晶体要短。
简介:采用Sol—gel法合成了BaTiO3、BaTi2O5和BaTi2O9粉末,利用XRD和SEM研究了它们的晶相和微观结构。在较低温度烧结得到的粉末都存在一定量的杂相,随着烧结温度的升高,杂相逐渐消失。在1000℃以上温度烧结,可以得到单相BaTiO3和BaTi2慨粉末,而单相BaTi09粉末则在1300℃以上温度烧结得到。随着n(Ba)/n(Ti)减小,所得单相的烧结温度逐渐升高。随着烧结温度的升高,BaTiO3、BaTi2O5和BaTi4O9粉末的晶粒逐渐长大。800℃以上温度烧结得到的四方BaT[03钙钛矿相粉末主要由方形和圆形的晶粒组成;1100℃烧结得到的单斜BaTiO5相粉末主要由近似菱形的晶粒组成;在1200℃烧结得到的正交BaTi4O9相粉末基本由长形的晶粒组成。
简介:不饱和聚酯(UP)通过正确选择原材料和固化条件可获得更广泛的应用。然而由于其抗冲击性能较低,使其一些应用受到限制。掺混能够增加网络结构柔性的改性剂可提高抗冲击性能。在UP网络结构中引入柔性的聚硅氧烷链段,象形成接枝共聚物一样,作为树脂和改性剂之间的低粘附性降至最低的一种方法,以便增加改性物的柔性。由于聚酯和聚硅氧烷是不互溶的混合物体系,在固化时,接枝共聚作用能够促进两聚合物问的相容性。所以,将甲基丙烯酸缩水甘油酯(GMA)通过自由基反应引入到树脂网络结构中,以及1,3-氨丙基三乙氧基硅烷(APTS)中的氨基与GMA反应。硅氧烷(1,1,3,3-四甲基-1,3-二乙氧二硅氧烷)的加入可使聚有机硅氧烷网络增长,而加水可以保证固化期间水解和缩聚反应进行。使用此方法可改善改性物的柔性。采用动态机械分析方法评价了接枝共聚,并且通过悬臂梁式试验评价了纯UP和改性UP抗冲击性能。在较低的改性剂含量范围内,在不饱和聚酯链段内接枝柔性链段可有效地提高聚酯树脂的冲击性能。
简介:采用一种经济可行的方法制备粉煤灰基CdS/Al-MCM-41介孔纳米复合材料,通过碱融法从粉煤灰中提取硅源和铝源,室温下模板组装纳米复合材料,小角XRD和高分辨率TEM结果表明,介孔分子筛Al-MCM-41的平均孔径约3.0nm,CdS颗粒均匀地分散于Al-MCM-41的孔道内;UV—vis漫反射光谱结果表明,CdS/Al-MCM-41纳米复合材料在波长约521nm处出现较强吸收边;荧光光谱结果表明,CdS与Al-MCM-41复合有效地降低了光生电子与空穴的复合几率;在可见光照射下,CdS/Al-MCM-41显示出较高的产H2活性,归因于CdS颗粒和介孔分子筛Al-MCM-41之间的协同作用所致。