简介:系统地研究了全平面收敛的B-值随机Difichlet级数的增长性,得到了在一定条件下,B-值随机Dirichlet级数在收敛平面上的增长(下)级几乎处处等于某Dirichlet级数的增长(下)级还得到了它们与指数和系数的关系式.
简介:描述玻色-爱因斯坦凝聚(BEC)的有效而方便的方程是著名的Gross-Pitaevskii(GP)方程。本文在将GP方程变换为非线性薛定谔方程(NLS)的基础上,利用齐次平衡法求出了Gross-Pitaevskii(GP)方程的一系列Jacobi椭圆函数解。
简介:用BV[0,∞)表示在[0,∞)的每一有限子区间上为有界变差函数的函数构成的空间,用(Ln(f,z)=∫0^∞dtkn(x,t)表示BV[0,∞)上的正线性算子,其中dtkn(x,t)是非负测度且∫0^∞dtkn(x,t)=1,则有定理如果Ln(|t-x|^β,x)≤C(x)/n^v,这里β>0,v≥1,C(x)是一个与x有关的常数,对f∈BV[0,∞)和x∈(0,∝)有|Ln(f,x)-[f(x+)+f(x-)]/2|≤|[f(x+)-f(x-)/2Ln(Sgn(t-x),x)+f(x)-[f(x+)+f(x-)/2Ln(δn,x)|+2C(x)/n^vx^β(n-1)↑∑↓k=1z-z/k^1/β^z+z/k^1/β(gx)+z+z/n^1/β↓z-z/n^1/β(gx)+√C(x)/n^v/2x^β/2(∫2x^+∝gx^2(t)dtKn(x,t))^1/2这里δx={0t≠x,;1t=xgz(t)={f(t)-f(x+)x
简介:文[1]中提出了求解连续函数f(x)总体极小值的均值算法,并证明了算法的全局收敛性.若假设f(x)是定义在某可测集G上的可测函数,本文证明了均值算法产生的迭代序列全局收敛到f(x)的本质极小值,若进一步假设函数f(x)满足测度Lipschitz条件,还证明了求可测函数的均值算法是线性收敛的.