简介:研究了具时变时滞的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.
简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.
简介:综述了集值映射的某些概念,例如度量正则性、伪Lipschitz性质(Aubin性质)、度量次正则性和Calm性质和这些概念的相互关系以及某些判据.也给出了他们在变分方程解的鲁棒Lipschitz稳定性、约束优化问题的最优性条件、集合族的线性正则性质和广义方程迭代过程的收敛性.
简介:通过对局部凸空间上凸函数可微性的讨论,首先建立了关于凸函数β可微性的特征定理;定义在局部凸空间E的非空开凸子集D上的每个连续凸函数f均在D的一个稠密的子集上β-可微(也称E具有β-LP性质)的充分必要条件为其对偶E“中的每个w~*紧凸子集均是自己w~*一β暴露点的w~* 闭凸包;然后进一步证明了E~*上的w~*一β扰动优化定理成立,即定义在E~*的每个有界w~*闭集A~*上的w 下半连续有下界的函数g以及每个ε >0均存在x0 A及x E满足使得(g+x)(x )=infA (g+x)且{xi } A ,(g+x)(xi )→infA (g+x)推出xi -xo ,当且仅当E具有β-LP性质.
简介:在实自反Banach空间中,证明了强增生型变分包含解的具有误差项的Ishikawa迭代程序的一些新的收敛性和稳定性定理.所得结果改进、推广和发展了一些作者早期与最近的相关结果.
简介:考虑含分布时滞的退化中立型系统的鲁棒稳定性.利用算子Ω的稳定性和线性矩阵不等式得到一个新的鲁棒稳定性判据,本判据将中立型时滞、时变离散时滞、时变分布时滞和退化中立型系统一起考虑,相比已有文献具有较低的保守性.利用Matlab可以验证本判据的有效性.