简介:地质储存是一种能够减少大气中人为二氧化碳(CO2)排放、技术上可行且可直接投入使用的方法。在众多二氧化碳储存方案中,都是使二氧化碳溶解于地层水并将其储存于深部含水层中。含水层储存溶解的二氧化碳的最大能力,就是含水层中饱和二氧化碳总量与当前总无机碳之差,并取决于压力、温度和地层水的盐度。假设在非活性含水层环境下,基于碳酸盐和重碳酸盐离子的浓度,通过能源工业收集的地层水的标准化学分析计算当前碳总量。在实验室环境中开展原位地层水分析时,利用地球化学形态模型计算从水样中释放的溶解气体。为了阐明氧化碳溶解度随水盐度增加而降低,利用纯水中饱和二氧化碳含量的经验关系式计算地层水中的最大二氧化碳含量。通过考虑溶解的二氧化碳对地层水密度、含水层厚度和孔隙度的影响,评估地层水中储存二氧化碳的最大能力,以计算含水层孔隙空间的水容量及水中溶解的二氧化碳容量。这种用于评估含水层中溶解的二氧化碳的最大储存能力的方法,已经被应用于加拿大西部阿尔伯塔盆地的Viking含水层。仅考虑注入高粘度二氧化碳液体的区域,经评估,Viking含水层地层水中储存二氧化碳的能力约为100Gt。随后的简单评估表明,在阿尔伯塔盆地深度超过1,000m的地层水储存二氧化碳的能力约为4,000Gt。该结果同样表明:当含水层地层水中总无机碳(TIC)与饱和二氧化碳溶解度相比非常低时,利用地球化学模型对原位地层水进行分析是不合理的。而且,在这种情况下,甚全可能会忽略当前的总无机碳。
简介:频率域全波形反演充分利用全波场的振幅、相位以及频率信息,采用较少的频率便能反演得到精度很高的速度模型。本文以有限单元法为基础,对起伏地形条件下二维声波频率域全波形反演进行了研究。在正演算法中,针对截断边界问题,并考虑多频率联合反演中计算区域采用同一套剖分网格的需求,提出了一种适用于起伏地形的衰减边界条件算法。该算法的核心思想是在控制方程波数项中引入衰减因子,通过一定方式调节衰减因子使得声波在衰减层中充分衰减,达到压制截断边界影响的目的。根据指数衰减规律,文中推导出了一种新的衰减因子计算公式,并给出了不同频率条件下衰减层厚度计算公式;在反演算法中,采用共轭梯度法求解高斯牛顿反演迭代方程组,避免直接求解雅克比矩阵和Hessian矩阵带来的巨额计算量,并采用相同的反演模型,对比分析了不同初始模型和频率组合对全波形反演结果的影响。起伏地形模型数值模拟和全波形反演数值试验表明,本文提出的指数衰减边界条件算法和基于该算法的全波形反演算法具有很好的应用效果。
简介:利用1951~2011年中国160个气象站逐月降水、温度、74项环流指数和NCEP再分析海表温度资料,采用偏最小二乘回归(PLSR)方法,结合均生函数构造预报量周期性因子,建立辽宁省汛期平均降水量及其5站(沈阳、朝阳、营口、丹东和大连)汛期降水量预测模型,并进行预测效果检验分析。结果表明:采用均生函数构造预报量周期性因子,在一定程度上弥补了气候预测统计模型高相关性因子的不足,从而使辽宁汛期平均降水量PLSR模型的试报均方根误差降低约10mm。PLSR模型由于较好地解决了预报因子之间的多重相关性问题,其预测效果较逐步回归模型有明显提高,对2002~2011年辽宁5站汛期降水量试报的Ps评分平均值为72.6%,比逐步回归模型提高了10.3%。