学科分类
/ 1
12 个结果
  • 简介:采用纯Cu粉、Cu-2Zn粉、Cu-2Fe粉、Cu-2Zn-2Fe粉等4种不同成分的铜剂,以Fe-Cu-C烧结钢为基体,在1120~1150℃、保温30min工艺下铜,研究不同成分铜剂的熔性能及其对铜烧结钢力学性能的影响。结果表明:同其它3种铜剂相比,Cu-2Zn-2Fe铜剂铜性能最好,烧结钢铜后表面质量均匀一致、无溶蚀现象;上下表面硬度基本一致,较未铜烧结钢提高了约60%;4种铜剂铜的烧结钢冲击韧性为13.7~14.0J/cm^2,较未铜的提高2倍以上;在铜剂中,Fe元素可以降低铜剂熔体活性、增加黏度;Zn元素可以降低铜剂熔体黏度、增加其活性。

  • 标签: 渗铜剂 烧结钢 熔渗性能 力学性能 溶蚀
  • 简介:引入“固态扩+轧制”的表面改性方式,即在研究镁合金薄板表面改性方法及工艺的基础上,采用固态粉末包覆热扩的方法,对AZ31镁合金薄板进行表面改性处理,获得研究目标材料;借助有限元软件Ls—DYNA模拟其冷轧过程,获得最优的轧制工艺参数并进行轧制实验,通过x.射线衍射(xRD)、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机和CorrTest腐蚀电化学测试系统检测材料表面的组织与性能。结果表明:轧制变形后的表面组织晶粒更加细小、均匀;耐磨性有所改善,表面硬度由HB61.4提高至HB63.5,摩擦因数由0.52变为0.6,表面摩擦磨损质量损失由0.33mg降低至0.26mg;表面耐腐蚀性能显著提高,其开路电位由-1.594V变为-1.574V,自腐蚀电位由-1.574V变为-1.38V,自腐蚀电流密度由6.2×10-3mA/cm2变为7.0×10-4mA/cm2。

  • 标签: 轧制 固态扩渗 镁合金 表面性能 LS-DYNA
  • 简介:通过压制、预烧和熔,制备1种液压零件用粉末冶金铜钢。用UMT~3型摩擦磨损实验机评价该材料在边界润滑条件下的耐磨性,研究基体密度对铜钢摩擦磨损性能的影响,并与目前常用的耐磨合金进行摩擦磨损性能对比。结果表明:在边界润滑条件下,铜量相同,基体材料密度分别为6.40、6.60、6.80g/cm2的粉末冶金铜钢摩擦副的摩擦因数相差不大,4h的质量磨损量分别为1.70、1.50和3.10mg;而传统耐磨合金中硬度较低的HMn58—2铜合金磨损量为24.10mg,磨损较快。

  • 标签: 粉末冶金 渗铜钢 边界润滑 摩擦磨损性能
  • 简介:高体积分数金刚石颗粒增强Cu基复合材料由于硬度高导致其难以加工成形。采用粉末注射成形制备多孔金刚石预成形坯和Cu熔相结合的工艺可以实现金刚石/Cu的近净成形。本文对经过表面镀铬再镀铜的金刚石粉末注射成形涉及的关键工艺,包括粘结剂的选择、注射成形工艺过程、烧结工艺等进行研究。结果表明,采用成分为70%石蜡+25%高密度聚乙烯+5%硬脂酸的粘结剂作为金刚石粉末注射成形的载体时,喂料具备优异的综合流变性能,同时可以获得较高的固相体积分数。采用上述配方的粘结剂,最佳的注射温度为165-175℃,注射压力为80~90MPa。脱脂金刚石预制坯最佳的烧结条件为:烧结温度1050℃,保温时间25min,此时坯体的强度达到10MPa,孔隙基本全部为开孔隙。

  • 标签: 注射成形 金刚石坯体 强度 开孔率
  • 简介:以Cu-Zr混合粉末为熔剂,密度为1.4g/cm3的多孔C/C复合材料为坯体,采用反应熔法制备C/C-ZrC-Cu复合材料,研究了复合材料的组织结构及物相组成,并对复合材料组织结构的形成机理进行了分析。结果表明:熔剂中Zr含量不同时,制备的复合材料均主要由C,ZrC和Cu相组成。随熔剂中Zr含量由50%增加到70%(质量分数),制备的复合材料中Cu含量逐渐降低,熔剂中Zr含量为60%时复合材料中ZrC含量最高(43.2%)。C/C复合坯体内的孔隙被反应生成的ZrC相及残余Cu相充分填充,炭纤维周围存在一层较致密的ZrC层,在远离炭纤维处,ZrC颗粒与Cu相呈混合分布状态。ZrC与C和Cu均有良好的界面结合状态,在ZrC颗粒长大和粗化过程中,形成了部分含内嵌Cu晶粒的较大ZrC颗粒。

  • 标签: C/C-ZrC-Cu复合材料 反应熔渗 组织 Cu-Zn混合粉末
  • 简介:在由氰酸盐(KCNO和NaCNO)与碳酸盐(K2CO3和Na2CO3)组成的盐浴中添加适量稀土La,对35钢材料进行盐浴碳氮共,对涂层的显微组织、涂层的厚度、显微硬度沿层深的分布以及涂层的耐磨性进行测试与分析,研究稀土La对35钢盐浴碳氮共的影响。结果表明:在盐浴中添加稀土La可显著提高碳氮共层的厚度和表面硬度;在温度为560℃、时间为2h条件下进行盐浴碳氮共时,添加稀土La可增加化合物层的厚度,稀土添加量(质量分数)为5%时化合物层最厚;添加稀土还可提高涂层硬度,在575℃/2h、添加5%稀土条件下盐浴碳氮共后,试样表层硬度HV0.01达到最大值835,且耐磨性显著提高,与常规盐浴碳氮共相比,质量磨损降低38.4%。

  • 标签: 稀土La 盐浴碳氮共渗 显微硬度 耐磨性 35钢
  • 简介:采用高固相含量浆料浸法制备C/C-SiC复合坯体,通过先驱体浸渍裂解工艺(PIP)增密制得C/C-SiC复合材料。对浸浆料的流变行为以及C/C-SiC复合材料的微观结构、力学性能和抗烧蚀性能进行研究。结果表明:用体积分数为5%乙醇水溶液制备SiC浆料,当浆料pH值为6,聚乙烯亚胺(PEI)质量分数为0.7%,固相体积分数为40%时,浆料具有良好的流动性和渗透性。浆料浸后的坯体中,SiC颗粒主要分布在网胎层及针刺纤维区域。C/C-SiC复合材料具有优良的力学性能,其抗弯强度和断裂韧性分别为335.7MPa和16.2MPa·m1/2。在2000℃氧乙炔焰烧蚀条件下,SiC被氧化生成的SiO2可填充气孔、裂纹等缺陷,防止材料进一步氧化,使得C/C-SiC复合材料表现出良好的耐烧蚀性能。

  • 标签: C/C-SIC复合材料 浆料 微观结构 力学性能 烧蚀性能
  • 简介:分别以针刺编织预制体(2.5D)和三维编织预制体(3D)为增强体,采用化学气相沉积结合高温熔工艺制备2种不同预制体结构的C/C-SiC-ZrC复合材料。利用X射线衍射仪,扫描电镜和能谱分析仪等测试手段,对材料的微观结构进行分析,采用三点弯曲实验和压缩实验研究材料的力学性能,得出不同预制体对最终复合材料断裂性能的影响规律。结果表明:材料中的SiC与ZrC呈偏聚态分布,2.5D复合材料的弯曲强度和压缩强度高达147.38MPa,252.4MPa;与3D复合材料相比,2.5D复合材料强度分别提高了192%和90.7%。这主要是由于2.5D复合材料纤维含量少,孔隙多,反应后密度较高所致。

  • 标签: C C-SiC-ZrC复合材料 预制体结构 断裂性能
  • 简介:将空心微珠在HF和NaF的缓冲中进行粗化处理,然后用75℃热碱活化,再以甲醛为还原剂,在空心微珠表面化学镀银。通过扫描电镜(SEM),X射线能量色散谱仪(EDS)和X射线衍射(XRD)对所得复合粉体的表面形貌、成分以及镀层与空心微珠的结合强度进行研究与分析,并探讨pH值对沉积效果的影响。结果表明:粗化处理可增大空心微珠的表面粗糙度,从而提高Ag+的形核能力,所得镀层完整、致密。镀pH升高,包裹层更完整、致密,且银层增厚。在pH=12.9的条件下,可实现银层对空心微珠均匀、致密的包裹,得到镀层结合强度较高、银层较厚、银晶粒尺寸为23.3nm的银包空心微珠复合粉体。

  • 标签: 空心微珠 化学镀银 无钯活化 结合强度
  • 简介:以密度分别为0.92,1.10和1.46g/cm3的多孔C/C材料为坯体,采用熔融硅法获得密度分别为1.94,1.86和1.79g/cm3的C/C-SiC复合材料A、B和C。将C/C-SiC复合材料与40Cr钢配副进行滑动摩擦实验,研究其摩擦磨损行为。结果表明:随载荷增加,坯体密度为1.83g/cm3的材料B的摩擦因数较稳定,基本围绕0.60波动,波动幅度0.2。材料A的摩擦因数波动幅度为0.3,而材料C的摩擦因数呈直线下降,降幅最大达0.5。但随时间延长,在试验载荷下,材料A的摩擦因数稳定性最好,波动幅度为0.07。SEM形貌表明,低载荷下,C/C-SiC复合材料的陶瓷相磨屑易聚集在摩擦膜边缘,而高载荷下磨屑分布较均匀,但摩擦表面都较粗糙,未形成完整、致密的摩擦膜。

  • 标签: C/C-SIC复合材料 C/C坯体 摩擦磨损
  • 简介:利用蒙特卡罗方法,通过建立合理的模拟规则,对单个圆形颗粒在相中被溶解并形成溶质、溶质扩散、以及溶质析出等过程进行模拟。模拟结果表明:颗粒溶解度随模拟时间延长而逐渐增加,相中的溶质浓度相应趋于饱和;升高模拟温度会加快颗粒的溶解速率,使溶质在相中达到饱和所需要的时间缩短,饱和浓度值相应增加;尺寸越小的颗粒表现出越高的溶解活性,通过对不同初始尺寸的颗粒在相中达到溶解平衡过程的模拟,所得平衡尺寸及饱和浓度之间的关联性与Gibbs-Thomson关系较为吻合。上述模拟结果均与实际溶解情况较一致。

  • 标签: 蒙特卡罗方法 模拟 溶解-析出过程 颗粒 液相
  • 简介:利用具有平行流进装置的新型电解槽,在电解总流量为18L/min条件下,采用不同的进模式制备电解铜粉,研究电解方式对槽电压、电流效率、电解能耗和铜粉性能的影响,对电解法制备铜粉的节能降耗进行探索。结果表明,采用传统进方式时能耗为3.01×10^6kJ/t,电流效率为94.42%,铜粉粒度为3.47μm,粒度分布集中;采用传统进协同阴极双侧平行进的方式能有效地降低电解过程的槽电压和电解能耗,并且随双侧平行进液流量增大,电流效率增加,能耗下降,但铜粉粒度增大。当双侧平行进的喷口流量为6L/min时较合适,电解能耗较低,为2.55×10^6kJ/t,铜粉的平均粒度为4.65μm,95%以上的铜粉粒度小于7.2μm,且铜粉具有明显的树枝状结构,与传统电解得到的铜粉性质相比没有明显差别;当喷口流量进一步增大至9L/min(即单独采用双侧平行喷方式)时,电解能耗进一步下降至2.17×10^6kJ/t,电流效率提高至96.95%,但铜粉粒度增加至45.76μm,且粒度分布出现明显的分级。

  • 标签: 电解铜粉 新型电解槽 电流效率 电解能耗 铜粉粒度