学科分类
/ 1
5 个结果
  • 简介:长期以来,事故在我国恣意猖獗,就因为它不是瘟疫.近年来,各类事故每天夺走近400条生命,比SARS半年致死的总数还多!每天因事故受伤的人数超过5000,相当于SARS确诊病例的全部!国家安监局公布的2002年伤亡数字显示,事故死亡人数占人身伤害事故总数的12.99%.而肆虐半年之久的SARS,在我国大陆的确诊病例是5300多例,死亡率仅为6%.

  • 标签: 事故预防 安全管理 安全生产 责任 劳动保护
  • 简介:<正>沙林(Sarin)是一种军用神经性毒剂,制成化学武器后在战场上用来杀伤敌方有生力量,其毒害作用,比常规武器的弹片具有更大的杀伤威力,称之谓速杀性毒剂。1995年3月20日日本邪教组织奥姆真理教在东京地铁内使用沙林杀

  • 标签: 神经性毒剂 沙林 毒害作用 化学武器 奥姆真理教 中毒症状
  • 简介:矿井瓦斯突出的发生是一个非线性系统在时空演化过程中的灾变行为,影响突出的各个基本因素与突出危险性之间存在复杂的非线性映射关系。对于处理这样的非线性时空演变问题,传统的数学方法是有局限性的。为了更好地预测矿井瓦斯涌出量,将灰色理论引入到预测精度高的遗传神经网络,使灰色理论和遗传神经网络有机结合起来,以神经网络理论为基础,利用遗传算法优化隐含层神经元个数和网络中的连接权值,并用其建立瓦斯涌出量的预测新模型。在实验室测试数据的基础上,建立遗传神经网络训练和检验样本集,并且将检验结果分别与标准BP神经网络的预测结果进行比较。

  • 标签: 安全工程 煤与瓦斯突出 非线性特征 灰色理论 遗传神经网络 瓦斯涌出量预测
  • 简介:为了给工业界提供一种快速预测二元混合液体自燃温度的有效途径,将试验所测不同组分及配比的168个二元混合液体的自燃温度作为期望输出,将基于电性拓扑状态指数(ETSI)理论、引入混合ETSI概念而计算出的9种原子类型所对应的混合ETSI作为输入,采用三层BP神经网络技术建立了根据原子类型混合ETSI来预测混合液体自燃温度的BP神经网络模型,并应用改进的Garson算法进行多参数敏感性分析。经模型评价验证及稳定性分析,得到训练集的决定系数R2为0.965,平均绝对误差MAE为11.892K,测试集的交叉验证系数Q2ext为0.923,平均绝对误差MAE为15.530K,发现该模型的预测性能优于已有的多元非线性回归(MNR)模型,表明BP神经网络模型具有较好的拟合能力和预测能力,对烷、醇类混合体系自燃温度的预测精度最佳。

  • 标签: 安全工程 二元混合物 自燃温度 BP神经网络 预测
  • 简介:落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系.人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法.基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究.结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快;该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路.

  • 标签: 安全工程 残存瓦斯量确定 自适应神经网络 落煤