学科分类
/ 1
13 个结果
  • 简介:用直接积分法计算耦合VanderPol振子系统的一阶近似守恒量,将耦合VanderPol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13精确守恒量,再考虑微扰项对精确守恒量的影响,运用一阶近似守恒量的性质,得到1稳定的一阶近似守恒量.另外,由13精确守恒量直接得到13平凡的一阶近似守恒量.

  • 标签: VAN der Pol振子系统 精确守恒量 一阶近似守恒量
  • 简介:可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统
  • 简介:利用加性掩盖和函数调制种混沌加密方式对模拟信号进行加密,分别从幅值和频率方面分析加性掩盖方式和函数调制方式,对比种加密方式加密效果,了解种加密方式的差异.计算结果表明:函数调制方式在幅值和频率的范围上都好于加性掩盖方式的幅值和频率范围,函数调制方式比加性掩盖方式更具安全性.

  • 标签: 混沌加密 加性掩盖 函数调制 模拟信号
  • 简介:建立了自由度点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对自由度点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以自由度点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,自由度点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:基于种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对种不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:在Goodwin与Puu的宏观经济思想基础上,得到了一推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.

  • 标签: 经济周期 分岔 混沌 最大LYAPUNOV指数
  • 简介:研究了一种具有时滞反馈的磁悬浮轴承系统的暂态混沌现象.数值分析表明,在相当大的时滞取值区间内,该系统的最终稳态运动不仅对初始值极其敏感,而且对反馈环节中的时滞也极其敏感.并对这种暂态混沌运动现象作了初步解释.

  • 标签: 时滞反馈 稳定性 暂态混沌 全局分叉 混沌运动 磁悬浮轴承系统
  • 简介:PER和TIM是果蝇重要的生物钟蛋白.以往的研究一直认为PER和TIM是在细胞质中结合为二聚体并以二聚体的形式进入细胞核.但2006年PabloMeyer等人的实验研究表明,PER/TIM复合物在细胞质中分离,然后PER和TIM在很短的时间内独立进入细胞核.根据该项实验结果,我们对果蝇昼夜节律调控模型进行了修正,修正模型反映了per和tim基因的转录翻译及蛋白质的翻译后修饰过程,二次磷酸化的蛋白质PER(P2)、TIM(他)分别独立进入细胞核并参与后续的调控过程.计算了修正模型的振荡周期并由此确定了新模型所引入的参数值.对修正模型的振荡节律进行数值分析,发现修正模型振荡节律在DD、LD条件下均产生了近于24h的持续周期振荡而在LL条件下呈现出振荡衰减,这些结果与原模型相似,反映出所建模型的合理性.但修正模型对参数对称性的依赖性则更加强烈,具体解释还有待于进一步的工作.

  • 标签: 昼夜节律 调控网络 动力学
  • 简介:本文详细分析了一具有粘弹性项的非线性振子的动力学与控制.首先研究了系统平衡点的稳定性,表明系统存在复杂的无界动力学行为.然后引入时滞速度反馈对这个不稳定系统进行控制.研究结果表明速度反馈控制能镇定此不稳定的粘弹性系统.适当的选择控制增益和控制时滞,控制系统有稳定的平衡点,由Hopf分岔产生的周期解,拟周期解,并能展现出复杂的混沌解.数值模拟验证了结论的正确性.

  • 标签: 稳定性 粘弹性 余维2分岔 时滞 HOPF分岔
  • 简介:研究了一新混沌系统的控制问题.基于自适应滑模变结构控制的方法,用该控制律,即使系统存在输入饱和及外界扰动,也可以将混沌系统的状态渐进稳定到指定的平衡点.该控制律对外界扰动俱有鲁棒性.数字仿真表明,其控制效果极好.

  • 标签: 混沌 混沌控制 变结构
  • 简介:研究了端受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由端部支承和约束边界条件得到了其模态函数的一般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和管截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和管截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加端部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。

  • 标签: 混沌反控制 三维混沌系统 LYAPUNOV指数 POINCARE映射
  • 简介:为全面了解和准确预测质点动力学系统运动特性.本文以具有固定边界的质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前一阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究中.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应