学科分类
/ 1
4 个结果
  • 简介:将微分求积法(DifferentialQuadratureMethod,简称DQM)应用于输液管道的非线性动力学分析,采用此法研究了受非线性约束输液管道的分岔现象和混沌运动问题.从悬臂输液管道模型出发,利用微分求积法形成管道的动力学方程.以分岔图、相平面图、时间历程图和Poincaré映射等分析手段考察了系统参数(管内流速)变化对管道振动形态的影响.结果表明,在所研究的系统中存在出现倍周期分岔现象和混沌运动的参数区域,这与前人的研究成果具有一致性.这为一类结构的非线性动力响应问题提供了一种新的研究思路.

  • 标签: 输液管 分岔 混沌 微分求积法 非线性动力学 结构动力学
  • 简介:基于在无时滞的情况下,非全同的Hindmarsh-Rose耦合神经元达到几乎完全同步的放电模式,通过数值模拟的方法,研究了时滞对耦合Hindmarsh-Rose神经元同步后放电模式的影响.结果表明时滞使得神经元的放电模式发生改变,同时时滞的增加能够诱导簇中的峰逐渐地减小或消失.这一研究将有助于我们更深入地了解时滞对耦合神经元系统行为的影响.

  • 标签: 时滞 几乎完全同步 放电模式
  • 简介:研究了单个ML神经元的放电模式及其动力学特征.通过快慢动力学分析得出随着参数的变化,神经元可以呈现出静息态、簇放电及峰放电等多种放电模式.本文同时研究了耦合强度和时滞对突触耦合的两个神经元同步的影响.在无时滞时,随着耦合强度的增大,耦合神经元的在相同步得到增强.而在某段时滞范围内,神经元在比较小的耦合强度下就能达到同步,这说明有效的时滞能够增强同步.此外,时滞只能在某些耦合强度下才对耦合系统的同步起作用.

  • 标签: 簇放电 峰放电 快慢动力学分析 同步 时滞
  • 简介:Pre-Botzinger复合体中兴奋性神经元节律性簇放电与呼吸节律的产生关系密切.泄漏电流对神经元簇放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型簇放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解.

  • 标签: 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律