简介:传统的关联规则Apriori算法在产生频繁项集的过程中,需要多次扫描事务数据库以及多次扫描频繁项集,从而造成算法性能下降.为了减少扫描事务数据库以及频繁项集的次数,在生成的候选k项集中,除了存储项集item-set以及支持度计数count之外,加入事务标识符列表Tidlist属性,在生成频繁k项集时,可以直接通过Tid-list的交集得出事务标识符列表以及项集的计数,不需要去扫描事务数据库,从而可以有效地提高算法的性能.文中提出了一种改进的关联规则挖掘模型以及关联规则挖掘算法I-Apriori算法.实验证明,I-Apriori算法相比Apriori算法的执行时间有明显改进.