学科分类
/ 23
446 个结果
  • 简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。

  • 标签: 非线性非平稳船舶运动 极短期预报 经验模态分解 支持向量机回归模型 自回归模型
  • 简介:以《2017福建省普通高中毕业班质量检查理科综合能力测试卷》为例,对物理这门学科在考试中如何审题,如何建立物理模型,使得物理微模型再现进行分析与例举,有助于通过审题分析,在大脑里形成一个生动而清晰的物理模型,构建出相应的物理模型,提取解决问题的物理微模型模板,找到相对所适用的物理规律和解题方法,顺利地、准确地利用物理微模型的规律进行迁移应用,从而完成解题过程。

  • 标签: 福建省理综质检 审题与建模 隐含条件 提取模板 映像物理规律
  • 简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.

  • 标签: /M/1重试排队模型 特征值 几何重数