学科分类
/ 1
10 个结果
  • 简介:针对落球法粘滞系数实验中存在的诸多弊端,如小球释放凭经验、人工秒表计时误差较大等,对传统的粘滞系数实验进行改进,用光电门和数字毫秒计代替人工秒表计时,有效降低了人工秒表计时带来的视差和反应误差;在容器顶部加装中心带磁铁拉杆的盖子,通过磁力控制保证小球沿容器的中心轴线下落,降低了小球下落时间的测量误差。测试结果表明,使用改造后的实验仪能够有效提高实验的测量精度,降低实验误差,提高了仪器设备的使用率,降低了实验成本。

  • 标签: 粘滞系数 落球法 仪器改造
  • 简介:针对测定液体粘滞系数实验中所存在的问题,对小球下落时间的测量方法提出了改进,以提高实验精度,减小实验误差。

  • 标签: 粘滞系数 实验 方法改进
  • 简介:采用间接比较法,就是利用已知的标准量作为参考,通过比较公式,来测量某未知量。该方法可使实验操作过程大为简化,不仅减少了测量量,且单位不必国际化,计算更简单,有效数字位数只由已知标准量来确定,从而提高了测量的精度,使比较公式的物理意义更加明确。该方法使学生的视野大为开阔,为很多的实验,提供了多选方案,为进一步拓展学生的思维,培养学生的创新能力,起到了很大的作用,也为老师开设自选设计性实验开辟了新天地,使大学物理实验更添活力。

  • 标签: 比较法 测粘滞系数 物理实验
  • 简介:本文指出了粘滞系数实验中的计算错误。详细推导了正确计算液体粘滞系数的计算公式。

  • 标签: 粘滞系数 摩擦力矩
  • 简介:本文提出了一种测量粘滞系数的新方法──在垂直毛细管中进行测量。

  • 标签: 垂直毛细管 粘滞系数
  • 简介:针对在"落球法测量液体粘滞系数"的实验中,小球在液体中开始匀速运动的时间和位置很难判定,我们使用Matlab/Simulink仿真软件的虚拟现实(VR)工具箱制作了"落球法测量液体粘滞系数"的演示实验,对蓖麻油中小球的运动规律进行了动态的仿真,并将仿真结果与真实的实验结果进行了比较和分析,这将有助于提高学生对实验结论的认识和理解。

  • 标签: 粘滞系数 落球法 VR 演示实验
  • 简介:本文通过理论推导,得出在考虑空气粘滞阻力的情况下,用气垫导轨测重力加速度的实验近似公式,并给出重力加速度的修正项。

  • 标签: 重力加速度 空气粘滞阻力 阻力系数
  • 简介:目的:研究一种使用连续的土壤模型模拟土壤-结构界面的新方法,并阐述这砦模型增强土壤-结构相互作用的建模方法。创新点:1.基于先前的亚塑性模型,通过将晶粒间应变的概念融入模型公式来模拟循环载荷。2.整体性较好的模型具有更好、更精确的模拟结果。方法:1.采用一种砂浆接触的力学方法,其中一个表面作为主面,另一个表面作为从属面。2.采用砂浆接触的力学方法并结合用户定义的子程序,对土壤-结构界面进行建模。3.基于先前的亚塑性模犁,将晶粒间应变的概念融入模型公式来模拟循环载荷。结论:1.整体性较好的模型具有更好、更精确的模拟结果。2.本文提出的土壤-结构界面建模方法不仅提高了模拟结果,且在某些模拟中提高了数值收敛性。

  • 标签: 亚塑性 接触面 循环荷载 细颗粒和粗粒土
  • 简介:研究目的:研究方法:通过有限元分析和极限分析,研究了在纵向和横向载荷下钢框架的最大负荷和坍塌模式,并考虑了塑性铰链住轴向力和弯曲力矩的作用下住实际旋转时的运动学。在垂直和水平方向载荷共存的情况下,基于轴向力和弯曲力矩的交互作用,研究延性框架的极限载荷和坍塌模式对产生于塑性铰链的真实运动学的敏感性。通过两个基本的案例和通过成功地评估非线性有限元分析和直接实施的极限分析步骤,并利用MATHEMATICA,揭示了其敏感性。在标准规程的框架下,即使在最简单的案例中,极限分析的主要结果也会考虑在坍塌时的运动学,这与设计和加固的目的都是相关的。如果没有对所有的结构元件的轴向力和弯曲力矩的交互作用进行合理的计算,塑性铰链的定位计算可能得出不正确的坍塌机理和误导性的安全系数。就具体方面而言,本文清楚地表明,在设计新的结构或者为现有结构进行加固时,即使是使用看起来已经非常完备的经典步骤,也必须非常小心。本文的模型可以为处理规程设计的执业工程师和标准化委员会提供参考。

  • 标签: 钢框架 极限分析 实际塑胶铰链位置 坍塌运动学
  • 简介:网格自适应(AMR)方法的研究起始于20世纪80年代早期,它在自己感兴趣的区域使用密布的细网格,其他区域用较粗的网格。在同样网格存储和计算工作量的前提下可有效的提高流场数值计算的分辨率和计算精度。AMR方法分为以下几类:(1)移动网格,具有固定的网格点数,只是网格的位置根据所需的要求进行调整,从而使得网格几何特性变好或局部网格变密(或变粗),达到网格优化的目的,网格的拓扑结构一般不发生变化;

  • 标签: 网格自适应 EULER方法 三维弹塑性 流体力学 计算精度 数值计算