简介:对于平面上分段线性的连续系统研究了同宿轨的存在性及同宿分岔问题.该系统同宿轨的存在性可以归结为两种情况:一种是由一个可见鞍点和一个可见焦点(或中心)组成的系统;另一种是由两个稳定性相反的结点重合于原点组成的系统.本文对第一种情况给出了同宿轨存在的充要条件,并研究了相应的同宿分岔问题.
简介:针对一类非线性减震器,应用能量相位法研究了减震器系统在1∶0内共振,第一阶主共振情形下系统的多脉冲轨道和同宿树.首先,将系统的无量纲动力学控制方程转化为近可积哈密顿系统的标准形式.其次,研究了该系统的未扰动力学行为和扰动动力学行为,分析了耗散因子及相位漂移角对多脉冲轨道脉冲数和层半径的影响,揭示了这类非线性减震器能量从高频模态向低频模态转移的动力学机理.
简介:Leland模型是在考虑交易费用的情况下,对Black—Scholes模型进行修改得到的非线性期权定价模型.本文针对Leland模型,提出了一种求解非线性动力学模型的自适应多尺度小波同伦摄动法.该方法首先利用插值小波理论构造了用于逼近连续函数的多尺度小波插值算子,利用该算子可以将非线性期权定价模型方程自适应离散为非线性常微分方程组;然后将用于求解非线性常微分方程组的同伦摄动技术和小波变换的动态过程相结合,构造了求解Leland模型的自适应数值求解方法.数值模拟结果验证了该方法在数值精度和计算效率方面的优越性.
分段线性连续系统中的同宿分岔
非线性减震器的多脉冲轨道和同宿树研究
求解非线性期权定价模型的自适应小波同伦摄动技术