简介:摘要:解析几何是高考考查的重要内容,主要有:直线与圆、直线与椭圆、直线与双曲线、直线与抛物线的位置关系,相交求交点坐标及弦长等。直线作为解析几何的重要组成部分,直线的参数方程在解析几何中有着较为广泛的应用,且在具体题目中有着较强的的综合性与灵活性。学生对直线方程的五种形式:点斜式、斜截式、两点式、截距式、一般式较为熟悉,能够熟练运用。但对直线的参数方程较为陌生,应用起来有着一定的难度。直线的参数方程作为选修 4-4第二章参数方程的重要内容,近几年高考对直线的参数方程的考查力度有所加大,其中以参数方程中参数 t的几何意义最为突出。如何准确理解直线参数方程中参数 t的几何意义,并能熟练运用直线的参数方程解题,对学生综合能力的提高及数学核心素养的培养有着十分重要的意义。因此,本文主要从直线参数方程 t的几何意义及其应用几个方面作较为详细的阐述,为直线的参数方程教学提供参考。
简介:讨论了应用物理中的Schroedinger-Klein-Gordon方程,在较弱的条件下,证明了问题整体解的存在性,对于理解相应的物理现象具有重要的意义。