学科分类
/ 3
54 个结果
  • 简介:本文用Legendre谱方法估计一端固定,一端加弯矩耗散线性反馈的振动的闭环系统使能量最快衰减的最优反馈增益,我们给出了数值产生的图形结果,通过比较发现另一种非耗散的线性反馈在最优反馈增益下比相应的耗散线性反馈有更好的衰减率。

  • 标签: 谱方法 反馈控制 稳定性 振动 线性反馈
  • 简介:本文研究的是由记忆热方程和Euler-Bernoulli方程构成的传输系统,其中热方程作为方程的控制器.通过频域上的能量乘子法,我们建立了耦合系统的指数稳定性.

  • 标签: 记忆热方程 梁方程 边界传输 指数稳定性
  • 简介:求出用Jackson算子Jn(f.,x)逼近函数f(x)(∈C2x)时关于二阶连续模ω2(f;1/n)的最佳逼近常数:^εupsupn∈Nf∈C2^xf≠cost‖Jn(f,x)-f(x)‖c/ω2(f,1/n)=8-17/π及用阶数不超过n的三角多项式Hn^T对连续函数f(z)的最佳逼近Bn(f)c的上界估计:Bn(f)c≤(24.5-203/4π)ω2(f,1/n)。

  • 标签: 最佳逼近 二阶 算子 连续模 常数 上界估计
  • 简介:讨论变系数Euler-Bernoulli振动系统utt(x,t)+η(t)uxxxx(x,t)=0,0<x<1,0≤t≤T{u(0,t)=ux(0,t)=0,0≤t≤T-uxxx(1,t)+mutt(1,t)=-αut(1,t)+βuxxxt(1,t),0≤t≤T(1)uxt(1,t)=-γuxx(1,t),0≤t≤Tu(x,0)=u1(x),ut(x,0)=u2(x),0≤x≤1证明了该系统产生一个发展系统.

  • 标签: 变系数 发展系统 存在性 证明 振动系统
  • 简介:本文主要是研究连续变量遗传系统Volterra方程的第二型,即x(t+h0)=η(t+h0)+F(t,(x(t),x(t—ht)…,x(t-h0)的p-均值可积性.同时举例说明了此方程的Lyapunov泛函的构造,以及利用Lyapunov泛函证明了例子的均方可积性.

  • 标签: 连续变量 LYAPUNOV泛函 p-均值可积 随机系统
  • 简介:研究时滞差分方程解的性质在理论和应用中是非常重要的.本文借助研究离散变量的差分方程振动性的一般方法,研究了一类具有连续变量的变系数偶数阶中立型差分方程的有界解的振动性,给出了有界解振动的几个充分条件.

  • 标签: 差分方程 有界解 振动 最终正解
  • 简介:本文就可测函数是连续函数的推广做了进一步的论述。证明了任意可测集合上的连续函数都是可测函数。证明过程可启发人们对可测函数的结构进行更好的研究并由此对鲁津定理的理解更深透.

  • 标签: 可测函数 F_σ型集
  • 简介:通过函数的下卷积函数列的逼近方法,在变分原理中从扰动最小值点集的"大小"入手,研究了下半连续函数的可微性.

  • 标签: 下半连续函数 可微性 逼近
  • 简介:考虑动态输出反馈控制下Euler-Bernoulli的振动抑制问题,证明了系统算子生成的C0-半群,不指数稳定但渐近稳定.且当初值充分光滑时,利用Riesz基方法估计出系统能量多项式衰减.

  • 标签: EULER-BERNOULLI梁 稳定性 RIESZ基 动态控制
  • 简介:一般教材求连续型随机变量的分布函数均采用分布函数的定义来求.笔者认为这种方法在计算上有很多麻烦,但对初学者来说较难掌握,笔者经过大量的计算和总结发现可用不定积分法求连续型随机变量的分布函数,它省时省事,且较易掌握.设ξ为连续型随机变量,F(x)为ξ的分布函数,Φ(x)为ξ的分布密度函数,且

  • 标签: 连续型随机变量 分布密度函数 不定积分法 二时 大时
  • 简介:讨论具有非线性耗散边界反馈的非均质Euler-Bernoulli的镇定问题.首先利用非线性半群理论和能量摄动方法,证明了文中所给出的非线性耗散边界反馈控制可以镇定闭环系统的能量,并导出了闭环系统的能量的衰减速度.

  • 标签: 反馈镇定 耗散 半群理论 边界反馈控制 摄动方法 非线性