简介:没有油层的压裂改造,便没有低渗透油藏的开发。压裂改造油层已成为开发低渗透油藏必不可少的重要措施。低渗油藏的成功开发,都是与油层的压裂改造分不开的。国外很多著名的大型低渗油藏,如果不对油层进行改造,也不会有今天的开发局面。例如,加拿大帕宾那油田卡狄母油藏,含油面积1909.89km^2,油层平均渗透率仅24×10^-3μm^2,压裂改造油层之前,渗透率小于10×10^-3μm^2。的油层不出油,出油井的产量也很低。通过压裂完井见到了很好的效果,全油田的平均单井产量达8.0t/d,一年之后虽然降到5.3t/f,但压裂后增产效果却保持了4年。目前国外采用的压裂改造措施主要包括水力压裂、二氧化碳加砂压裂和其它非常规压裂方法。
简介:SaihRawl油田(阿曼)的Shuaiba石灰岩储层是一个几乎无断层的大面积低起伏构造。渗透率较低(1-10mD),受基质控制。储层含有约90×10^6m^3的轻质油(35°API),油柱高度一般为15-30m。油田的工业生产始于油田有效引进水平井技术后的二十世纪九十年代早期,此时距它的发现已有二十年。如今,油田的面积注水开发中运用了每口井拥有7口分支井的多侧向注水技术。单井在储层中钻穿的裸眼总长度已达11km。迄今,钻穿的生产井的裸眼长度是166km,注水井的裸眼长度是107km。有着167口水平分支井,原油生产水平达到9000m^3/d(60000bbl/d)。原始开发井与其注水分支井之间的井距原先是250m,现已逐渐缩短为60m,但还是符合经济标准。在2000-2001年间,为找到短期和长期意义上的更长远的开发目标,油田回顾了自身的开发历史。在油田内,运用一系列的油藏管理新方法来预测储层对不同开发方案的反应效果。为检测这些开发方案和广泛收集数据,确定出一块监测区,最后开展实验性研究和可行性研究。此次回顾制定了短期和中短期开发活动的投资组合方案,包括加密钻井至井距为40m和在现有的注水井间补钻注水分支井;还识别出油田冀部的开发地区的上盘(油柱下部的15m);以后将对鱼骨结构式的侧向钻井以及将水反注入现有生产井的措施进行试验,其间计划将波及优化方法,如封水法及再次增产措施法的目标定为采收率达到50%。
简介:本发明提供了一种增加井钻遇地层中油气产量的方法.该地层同时具有含水剖面和合烃剖面该方法由下列步骤组成:(1)向该地层注入一种合有改善疏水性相对渗透率调节剂的水处理液,(2)向该地层注入一种酸化处理液.可采用多种方式生成和向地层注入改善疏水性相对渗透率调节剂(RPM).例如,这种改善疏水性RPM可以是一种亲水聚合物和一种疏水化合物的反应产物.这种亲水聚合物是一种在聚合物骨架或者侧基上含有反应性氨基的聚合物,它可以与一种疏水性的卤代烷化合物反应.这种改善疏水性础,M可能包括例如一种被烷基卤化物季铵化的DMAEMA聚合物,其中烷基卤化物烷链长度为6到22碳。
简介:位于阿拉斯加北斜坡的Kuparuk河油田是北美洲最大的油田之一。大约有三分之一的原始石油地质储量在它的C砂岩中,该砂岩是浅海相砂岩,具有强烈的生物扰动和复杂的成岩作用特征。菱铁矿的含量变化很大,导致渗透率、孔隙度和毛细作用变化很大。C砂岩中的矿物学、孔隙度和含水饱和度的电缆测井解释是相对简单的,它提供了粘土、菱铁矿和海绿石含量,并说明了岩心的非均匀性。由于孔隙度一渗透率交会图中点的分布极端分散,要计算实际的渗透率曲线是非常困难的。在用测井孔隙度估计渗透率的地方,关键的孔隙度-渗透率转换关系是糟糕的,因为其结果没有再现岩心分析数据中存在的极端分散状态。油藏描述的最新研究,要求重新估价渗透率模型,以便用一种简单的方式按比例放大来预测需要的特性,并输入到地质孔隙模型中使用。现在已经开发出一种预报渗透率的新方法。它以密度测井(RHOB)和岩相为基础,随机选择数据子群的岩心体积密度值。对每隔半英尺的测井深度点,岩心体积密度值是随机重复选择的,多次重复直到滑动时窗内的平均密度值,在标称的0.05g/cc的预置容限内,与RHOB测井曲线匹配为止。然后,把与选择的岩心体积密度值对应的岩心孔隙度和渗透率值当作为每个深度点选定的最后结果。这个方法复制了岩心孔隙度和渗透率值的统计分布,获得了各半英尺深度点的数值。我们把测量深度转换为SSTVD,并将0.5ft取样间隔按比例放大为1ft和2ft取样间隔。按比例放大的渗透率值与逐井分析的岩心塞得到的kH相匹配,也与从观察许多井的最大流量得到的kH一致。在提供与其他测量的渗透率值匹配情况下,按比例放大的渗透率值也可用在地质孔隙模型上。
简介:近年来,随着低渗透油气藏的不断开发,对低渗透油气藏中流体渗流规律的研究越来越引起人们关注.本文针对低渗气藏中气体低速非达西渗流进行了大量的实验研究.通过对实验现象的探讨认识到:低渗储层岩石中单相气体低速渗流具有非达西渗流特征,表现为渗流曲线直线段的延伸与流速轴相交,即存在一个"拟初始流速";低渗储层岩石在一定含水饱和度下,气体低速非达西渗流特征更为明显.残余水饱和度存在所产生的毛管阻力,使气体渗流曲线低速段的形态与单相气体渗流时相反,呈现上凹形态.在相应的克氏回归曲线上,存在着明确的临界点.临界点以下,气体渗流受毛管阻力影响,表现为气体(视)有效渗透率随压力增大而增大;临界点以上,气体渗流受滑脱效应影响,表现为气体(视)有效渗透率随压力增大而减小.气体低速渗流曲线特征与储层岩石渗透率和残余水饱和度密切相关,随渗透率增大和残余水饱和度的降低,气体低速非达西型渗流逐渐向达西型渗流过渡.
简介:近37年来,泡沫在多孔介质中的流动因其在EOR和增产措施方面的应用,已成为普遍研究课题。酸化作业中,当层问存在渗透率级差时就是用泡沫促使酸转入低渗透层。人们对泡沫在低渗透岩石(1~10md)中的流动性质研究得比较少,主要因为注入过程中出现高压力梯度造成设备限制。本文讨论用9md烧结贝雷砂岩岩心在额定3500psi(24NPa)装置中进行的几个单岩心、恒定泡沫特征值、稳态泡沫流实验结果。通过改变表面活性剂类型、泡沫特征值、液体和气体流速等因素以研究这些因素对泡沫流度、流度降低系数以及压力梯度的影响。为了模拟酸化过程中泡沫酸后的情况,每次实验先注泡沫,后注盐水,然后研究残余渗透率和泡沫稳定性。实验中泡沫特征值在.55%~90%之间,注入速度在5~25ft/d(1.5~7.5m/d)之间。发现所有稳态注泡沫实验中流度都有很大的降低。本文推荐一个称为残余指数的新参数以量化泡沫酸后的泡沫稳定性。残余指数是预测泡沫转向动态的关键,而且,当用无量纲参数如流度降低系数而不用流度进行比较时,得到的结果更相符。最后,把低渗透岩心实验结果同高渗透岩心进行比较以确定低渗透地层中产生泡沫的独特性。
简介:本文介绍在原始状况下,天然岩心有汽驱残余油饱和度时,蒸汽—水相渗透率的测试技术。通过CT扫描测定天然岩心每一平衡点的饱和度。压降测试技术与目前公开发表的液—液系统中的测试方法是相类似的。在驱动过程中,进出口端允许有一定的热量散失,汽—水相渗透率的计算则是采用压力数据和进出口端的温度。在多孔介质中,蒸汽相的相对渗透率在考虑误差后与公开发表的气相相对渗透率很接近,而水的相对渗透率似乎低于由菜弗里特在非胶结砂子中所测定的值。由于岩心中粘土矿物的膨胀和微粒的迁移,使压力和饱和度的测定变得复杂化。而本文所介绍的测定多孔介质中蒸汽相相对渗透率的方法则是可行的,但多孔介质的绝对渗透率必须是不变的。
简介:众所周知,难以用碳酸盐岩储集层测井资料准确预测渗透率。在哈萨克斯坦西部的Tengiz油田是一个巨型碳酸盐岩储集层,最近研究出一种根据生产测井(PLT)的流量计算视渗透率(APERM)的方法。将这个流量刻度的视渗透率综合到静态地质地层模型,最佳地解决了如何将动态PLT资料最佳地综合到一个储集层模型中长期存在的问题。最近,使用APERM建立的一个储集层模型极大地改进了早先那些只用基于静态测井资料的渗透率变换构成的地层模型。常规测井资料的渗透率变换被设计用于描述基岩渗透率,而不是描述由碳酸盐岩储集层中常见的裂缝和孔洞孔隙产生的超量渗透率。APERM方法用于准确描述总渗透率(基岩+超量)和用质量差的测井资料或有限的测井资料识别老井中不准确的渗透率预测。在新打的井中,由于有现代测井资料,基于测井资料的渗透率预测会更准确,但由静态测井资料的连续取值识别和渗透率的定量评价仍成问题。用已知的流动压力、静态压力、井性质、储集层性质和流体性质,通过求解达西定律计算一个层段的视渗透率。该方法虽做出几个简化假设,但产生的误差都是次要的,该方法对使用基于常规静态测井资料的变换渗透率有所提高。该方法因能够用多流量PLT求解粗粒地层压力而有所增强,使用这些压力作为求解渗透率的输入值。然后,将由PLT得到的视渗透率作为一个基准来调整使用一个可变的乘数由静态测井资料推导的变换渗透率。这种方法具有保存电缆测井原始精细刻度不均匀的优点,同时对它们的大小进行校正。未来的计划将研究APERM和岩石类型之间的对应性和用裸眼井测井资料的统计变换。基于测井资料的变换可被用于没有PLT资料的井或井段,提高储集层模型中渗透率的精度。