简介:给出了一个新的具误差的Ishikawa迭代序列强收敛到T的惟一不动点;并给出当T是Lipschitz强增生算子时,一个新的具误差的Ishikawa迭代序列强收敛到非线性方程Tx=f的解.
简介:摘要:非线性分析中的不动点理论广泛应用于运筹学、经济学等领域,在动态规划、随机算子等方面有着非常大的应用和推广前景。本文针对积分型压缩映射的单值映射定和集值映射定理的约束条件和发展递进过程进行了阐述和分析,发现用于单值映射定理的相关约束条件以集合的形式出现在集值映射定理中,依然能够满足不动点的存在性和唯一性。通过单值和集值映射定理的相关性和递进性分析,以期为后续不动点理论的拓展研究和推广应用提供借鉴。
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:文章利用正规对偶映射的定义,给出了任意Banach空间Lipschitz强伪压缩映射不动点的Ishikawa迭代收敛定理.该定理不仅推广了已知结果,而且还简化了目前相应结果的证明.