简介:本文运用Liapunov函数方法,研究了一类四阶非线性微分方程的周期解,得到了存在唯一渐近稳定的周期解的充分条件。
简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:摘要:伴随着我国教育体制改革的不断深化推进,国家对于应用型人才的培养再次提出了新的要求,在这样的时代发展背景影响下,传统常微分方程教学模式的优化创新问题越来越引起了教师群体的广泛关注和热烈讨论。本文针对高科这一教学阶段就如何能够更好的加强对于常微分方程教学模式的应用型改革创新质量问题进行了深层次的研究和讨论,希望能够帮助相关教师在进行实际的模式优化过程中引发更多的思考,从而在整体上会提升整体课堂的教学效果起到深远的铺垫作用。
简介:本文在无界区域上,研究带耗散项的非线性奇异积分微分方程(1)的初值问题(2)的整体广义解和整体古典解的存在性和唯一性,其中Hilbert是奇异积分算子(3)P代表奇异积分的主值积分,由(3)知道HU,HUx,HUxx(是奇异积分项。0