学科分类
/ 1
2 个结果
  • 简介:为解决受背景噪声和信号传递路径等因素影响,轴承早期故障特征微弱,难以有效诊断出轴承故障的问题,提出了一种最大相关峭度解卷积(MaximumCorrelatedKurtosisDeconvolution,MCKD)结合冗余第二代小波包变换(RedundantSecondGenerationWaveletPackageTransform,RSGWPT)诊断轴承早期故障的方法。结果表明:该方法基于MCKD增强原始信号中存在的周期性冲击成分,以最大相关峭度为指标筛选RSGWPT小波包节点,能够凸显故障特征敏感频带,提取故障特征;通过分析车用变速器轴承内、外圈的早期故障数据发现,该方法能够清晰地诊断出轴承早期故障信息,验证了其有效性。

  • 标签: 最大相关峭度解卷积 冗余第二代小波包 滚动轴承 故障诊断
  • 简介:针对峭度谱(Kurtogram)无法有效区别振动信号中的瞬态故障冲击和脉冲噪声,难以准确提取微弱的滚动轴承故障特征的问题,提出一种基于加权峭度(WeightedKurtosis,WK)的滚动轴承故障特征提取方法,通过固定设置滤波带宽,利用加权峭度识别共振中心频率,确定带通滤波器的滤波中心频率和带宽,结合包络分析提取滚动轴承故障特征,并通过采集变速箱滚动轴承振动数据对该方法进行了验证。结果表明:该方法能够有效克服峭度谱的缺陷,稳健识别滚动轴承共振中心频率,准确提取滚动轴承故障特征,验证了该方法的有效性。

  • 标签: 峭度谱 加权峭度(WK) 滚动轴承 特征提取