学科分类
/ 4
65 个结果
  • 简介:本文利用勒让德多项式的性质证明了其导数多项式是[-1,1]上关于权1-x2的正交多项式.

  • 标签: 勒让德导数多项式 正交
  • 简介:本文研究文[1]中提出的一类择优增长系统,说明文[1]中利用主方程法求解系统的平均度分布及稳态度分布是值得商榷的,然后通过考虑系统中空团体的存在的可能性,对系统进行修正,并证明空团体存在的必要性。

  • 标签: 择优增长系统 度分布 无标度性 马氏链
  • 简介:非负定性是数学中一个重要概念,本文提出了二元函数非负定性的两个定义,并且证明了它们的等价性.此外本文还给出了严格非负定条件下实正态过程存在的一个充要条件.

  • 标签: 非负定性 正态过程 分布函数
  • 简介:设(M^3,90)是非紧三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。

  • 标签: RICCI流 无局部塌缩定理 拟局域定理 渐近体积比
  • 简介:利用梯高分布工具和等价量性质,得到了经典风险模型在调节系数不存在且索赔额分布F∈S^*(v)(v〉0)时破产概率及其局部渐进解的相关定理,克服了已有文献中十分繁杂的论证过程.作为特例,当索赔额服从广义逆高斯分布时,给出了破产概率及其局部解的渐进结果.最后,对影响破产概率及其局部渐进解的一些参数进行了数值分析。

  • 标签: S^*(v)分布族 破产概率 梯高分布 调节系数
  • 简介:本文仅用Malgrange预备定理和Haar积分得到了下述结果:设G为线性地作用于Rn上的紧李群,σ1,…,σk是P(Rn)G的一组极小齐次Hilbert基,并用<σ1,…,σk>表(Rn)由σ1,…,σk生成的理想。若(Rn)/>σ1,…,σk>作为实向量空间是有限维的,则芽f∈(Rn)G当且仅当存在芽g∈(Rk)使得f(X)=g(σ1(X),…,σk(X)),X=(x1,…,xn),即σ*(Rk)=(Rn)G.

  • 标签: 紧李群 不变量 函数芽 预备定理 注记 向量空间
  • 简介:设F24为实一阶李群—F4的一个实型式,我们用F4的weyl群来参数化F24的广义主系列表示,因此,我们可以利用[1]提出的方便和直接的方法对奇异无穷小特征来计算F24的广义主系列表示的组合因子。

  • 标签: 李群 组合因子 主系列 参数化 注记 无穷小
  • 简介:考虑下述奇异半线性反应扩散方程初值问题:(()-1-t△u=ut+f(x),t>0,x∈RNlimu(t,x)=0,x∈RNt→0=)其中r>0,△=∑()/()x2i,f(x)非负且f(x)∈L∞(RN).首先利用增算子不动点定理,重新证明了IVP在(0,+∞)上至少存在一个非负解,并给出了IVP解的迭代逼近序列.其次获得了一个有关IVP(1)正解的无限增长性的结果.最后,证明了当r>1时,去掉条件1/r-1≥n/2,IVP的正解u(t)同样会产生爆破.研究结果表明情形limut→+∞(t,x)=+∞不会出现.

  • 标签: 半线性 奇异 扩散方程 初值问题 注记 正解
  • 简介:设P1,P2,…,Pl是几乎覆盖图G的l条不相交的路,s是没有被这些路覆盖的孤立点数.本文证明:(i)匹配多项式μ(G,x)的非零根的重数最多是l,零根的重数最多是l+s.(ii)对于不含三角形的n阶图G,伴随多项式h(G,x)的非零根的重数最多是l,零根的重数最多是(1)/(2)(n+l+s).(iii)对一种含三角形的所谓A型图,(ii)也成立.

  • 标签: 匹配多项式 伴随多项式 几乎覆盖
  • 简介:对于特征为零的域上的有限维线性空间的子空间的并,我们知道下述性质:有限个互不包含的非平凡子空间的并不是原来的线性空间.一方面,本文通过介绍有限维线性空间中任一子空间与齐次线性方程组解子空间的关系,及商空间的维数公式,给出了上述性质的一个改进证明.另一方面,本文把仿射簇的概念和子空间联系起来,并根据仿射簇的一个简单性质,给出了上述性质的另一个更为简洁的证法.

  • 标签: 子空间 商空间 维数公式 子空间的并 特征 仿射簇
  • 简介:重要极限limx→0sinx/x=1的常用证明方法是通过比较圆扇形和三角形的面积,得到不等式,再取极限,这种证明方法简明易懂,本文说明这种证明方法没有循环论证的问题.

  • 标签: 重要极限 弧长
  • 简介:给出齐次可列马尔科夫链转移矩阵的一种置换相似标准型,并用之来讨论链的极限性态,分别明确给出转移矩阵幂收敛于零矩阵、非零矩阵、随机矩阵、常随机矩阵和正的常随机矩阵的充分必要条件。

  • 标签: 随机矩阵 注记 非零矩阵 极限性态 收敛性 马尔科夫链
  • 简介:本文讨论了两粒子系统中量子态的可分性与关联性,分别得到了纯态与混合态可分的充要条件,及其元素必须满足的条件.用量子态元素之间的关系,给出了乘积态的刻画.此外,通过元素刻画了量子态的左(右)经典关联性与经典关联性.

  • 标签: 量子态 可分性 关联性 经典关联 量子关联
  • 简介:要设(Mn,go)(n奇数)是紧Riemannian流形,λ(go)〉0,这里λ(go)是算子-4△go+R(go)的第一特征值,R(go)是(Mn,go)的数量曲率.设以(Mn,go)为初值的规范化的Ricci流的极大解g(t)满足|R(g(t))|≤C和λ(对某个常数C一致成立).我们证明这个解有子列收敛于一个Ricci收缩孤立子.进一步,当n=3时,条件fM|Rm(g(t))+n/2dμt≤C可去.

  • 标签: RICCI流 无局部塌缩 非奇异解