简介:大跨度拱形立体桁架结构在强震下发生的失效模式有动力失稳破坏和动力强度破坏.依据已有的B-R动力失稳判定准则和评定网壳结构动力强度破坏行为的方法,研究结构在强震作用下进入塑性杆件数目及比例,以及结构最大位移变化规律.研究表明,如果超过某一荷载时,结构进入塑性的杆件比例显著增长,则该荷载即被认为是拱形立体桁架结构的动力强度破坏l临界荷载,以某拱形立体桁架为背景,选取三向El-Centro波和三向天津波作为地震输入进行弹塑性时程分析,进一步验证本文的结论,通过分析可以得出该拱形桁架在强震作用下发生动力失稳破坏.
简介:针对线天线结构的几何非线性特点,详细介绍了采用力矩平衡法对索结构进行找形的原理,并在找形的基础上对线天线进行了风荷分析.以垂直对数周期天线为研究对象,运用力矩平衡原理,通过自编程序对该结构进行了找形,并采用有限元分析软件ANSYS对该类天线进行了风载荷作用下的静力分析.通过对理论方法和ANSYS软件找形结果的比较,表明基于ANSYS软件对垂直对数周期天线结构找形是可行性,亦表明ANSYS能够对该类型的线天线进行风荷仿真分析.最后,通过算例的计算结果验证了文中的分析模型及计算方法的合理性和有效性,表明利用ANSYS软件能够对线天线结构进行找形分析与风荷静力学响应分析.
简介:为了研究不同墙体连接构造下高层建筑钢结构的抗震性能,进行了蒸压轻质加气混凝土(ALC)条板或砌块填充钢管混凝土框架结构的低周反复加载试验.根据填充墙施工安装工艺、钢结构特点和墙板类型,介绍了大板、条板和砌块等轻质墙体与钢框架的连接构造.通过试验研究了U形钢卡、钩头螺栓、摇摆连接件和角钢等连接构造对墙板抗震性能的影响.试验研究表明,在地震作用下,用U形钢卡或角钢内嵌与摇摆件外挂ALC条板的钢管混凝土框架结构具有良好的耗能能力;采用U形钢卡、钩头螺栓、摇摆件和角钢等合理构造措施,可以确保轻质墙体与钢管混凝土框架在地震作用下能协同工作和共同受力,并具有很好的安全保障;摇摆件连接由于具有良好的耗能性能,震后墙板基本无破坏,值得推广应用.
简介:在我国现行的《钢结构设计规范》GB50017-2003[1]中,对于受弯和压弯构件的稳定设计,没有涉及扭矩对构件的作用,而在《冷弯薄壁型钢技术规范》GB50018-2002中,既有受扭的单向和双向受弯构件,也有受扭的单向弯曲压弯构件的稳定计算方法。本文给出了受轴压、双向弯矩和扭矩作用的双轴对称,两端简支工形截面压弯构件的理论分析和稳定设计方法。建议将此方法列入准备修订的我国钢结构设计规范。现在,已经有许多外国学者对于受扭的钢构件作了研究。本文介绍了几种涉及扭矩作用的受弯和压弯构件的最新研究成果。将这些最新研究成果概括起来,可以作为修订我国钢结构设计规范的参考材料。为此,本文介绍了德国学者Lindner,J.和Glitsch,T.[2]对于受扭的厚实和非厚实梁,通过理论分析和试验研究,给出的梁的稳定设计建议;加拿大学者Ashkinadze,K.[3]修正了两端简支的宽翼缘工形截面受扭梁的稳定设计方法,将其扩展到受扭压弯构件的稳定设计;德国学者Kindmann,R.和Wolf,C.[4]作了两端简支工形和U形截面梁的试验研究;日本学者北田俊行等[5,6]作了两端简支受扭箱截面压弯构件的理论分析和试验研究。
简介:首先回顾了筒仓抗震性能的研究进展,主要从有效质量系数和散料与筒仓壁动力相互作用两方面进行阐述.同时,基于Silvestri等人提出的理论模型,建立了合理的三维钢筒仓数值模型来模拟动力激励下散料与结构的相互作用效应.本模型的主要特点是将仓内散料分成内、外两部分:内部的每层散料重力完全由其下一层散料承担,而外部散料重力则完全通过摩擦力由仓壁承担.筒仓壁与外部散料之间的几何协调通过接触对实现,内部散料与外部散料间的协调则通过接触面处的节点径向自由度耦合实现.利用该数值模型进行了钢筒仓自振特性的参数分析,讨论了散料质量、弹性模量以及接触单元初始接触刚度等因素对自振特性的影响.
简介:基于有限元分析对方型鸟嘴式十字节点在支管非对称轴力作用下的应力集中特性进行研究,得到热点区域的应力集中系数(SCF)及其分布规律,并与传统正放式节点的分析结果对比.选用典型无量纲参数建立节点的有限元模型,并采用实体单元模拟焊缝的几何形状.结果表明:对于单侧支管轴力工况,CIDECT疲劳设计指南中针对传统正放式十字节点的SCF叠加公式并不适用于方型鸟嘴式节点,原因在于后者的主管壁板之间存在更明显的相互作用,从而导致节点的非支管轴力侧也产生显著的应力集中.通过引入新的荷载工况X-BFam来考虑纯单侧支管轴力作用,提出了同时适用于传统正放式和方型鸟嘴式十字节点在支管非对称轴力作用下的SCF叠加修正公式.
简介:为了评估有色冶炼厂房事故坑附近钢柱在炉料热作用下的耐火稳定性,本文以热辐射理论为基础,采用数值计算方法研究了钢柱9m高度内的温度分布。钢柱温度取决于炉料面积、柱翼缘厚度、柱的计算截面位置、炉料与柱相对位置。炉料面积越大,钢柱越处在炉料中部,钢柱的温度越高;柱翼缘厚度越大,炉料与柱距离越大,钢柱的温度越低。本文以弹性理论为基础,给出了钢柱耐火稳定性验算与评估方法。由于钢柱之间存在较大温差,当钢柱所支承的梁的线刚度较大,两端与柱刚接且设置隅撑时,较强的端部约束作用使柱产生较高水平的温度内力,钢柱在材料强度降低的同时荷载效应增大,钢柱可能会失去耐火稳定性而发生破坏。把柱、梁的连接由刚接改为铰接,取消所设隅撑,增大事故坑与柱之间的距离,增大柱翼缘厚度或对钢柱底部进行保护均可提高钢柱的耐火稳定性而保证安全。