简介:研究了非多项式增长的变分泛函,利用Orlicz空间理论,得到了其在Orlicz-Sobolev空间中弱序列下半连续的充要条件,推广了关于多项式增长的变分泛函的相应结论。
简介:考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.
简介:设R是素环,I是R的非零理想,如果R容许一个非单位映射的左乘子使得对所有x,y∈I满足δ(x·y)=x·y或δ(x·y)+x·y=0,那么R可交换.此外,如果R是2-扭自由的素环,U是平方封闭的李理想.γ是伴随导子非零的广义导子.B:R×R→R是迹函数为g(x)=B(x,x)的对称双导,当下列条件之一成立时U为中心李理想(1)γ同态作用于U(2)2[x,y]-g(xy)+g(yx)∈Z(R)(3)2[x,y]+g(xy)-g(yx)∈Z(R)(4)2(x·y)=g(x)-g(y)(5)2(x·y)=g(y)-g(x)对所有的x,y∈U.