简介:国内外许多学者认为,数学是有别于自然科学和社会科学的独立科学形式。本文主要参考《古今数学思想》[1]和《数学史教程》[2],从历史与哲学的角度探讨数学成为独立科学形式的主要根源。通过考证发现,数学成为独立科学形式的主要根源在于历史上三次重大的哲学思潮,它们导致了纯粹数学研究与背景问题(学科)研究的一次融合和三次重大分离,即:(1)毕达哥拉斯的'万物皆数'的哲学思想导致了第一次分离,形成古希腊抽象数学体系;(2)随着'文艺复兴'时期古希腊文明的复苏,数学和背景问题(学科)研究开始强大融合,并逐步被笛卡尔、伽利略以及后来的牛顿和莱布尼茨的'科学的本质是数学'的哲学思想所主宰,导致了
简介:在调查、访谈的基础上总结归纳出初中学生在电学上存在4个典型的前概念,并有针对性地提出转变电学前概念的三个教学措施,即设置冲突情景、利用变式强化正确概念、教学中培养学生思维方法.从而使学生科学有效地掌握初中电学概念.
简介:为解决一次性n人囚徒困境中局中人如何走出困境的问题,引进了背叛惩罚函数及其严厉度和参与人的背叛愿意度等概念,并用数学论证法证明了如下结果:(1)参与人的背叛愿意度都不超过1。(2)背叛愿意度越大,这个参与人越愿意背叛;(3)背叛愿意度为0零时,这个参与人是否背叛其赢得一样;(4)当背叛愿意度取负数时,其绝对值越大,参与人的合作积极性越大。得到博弈结果的判定法:(1)计算各参与人的背叛愿意度。(2)若至少有一个参与人愿意背叛,则全体参与人都背叛。(3)若全体参与人都愿意合作,则合作成功。例子表明,本结果在理论上可有效地解决中局中人如何走出困境和在给定惩罚机制下博弈结果的预测问题。