简介:<正>InthispaperitisprovedthatforallcompletelydistributivelatticesL.thecategoryofL-fuzzifyingtopologicalspacescanbewmbeddedinthecategoryofL-topologicalspaces(stratifiedChang-Goguenspaces)asasimultaneouslybireflectiveandbicoreflectivefullsubcategory.
简介:WeconstructaclassofintegrablegeneralizationofTodamechanicswithlong-rangeinteractions.ThesesystemsareassociatedwiththeloopalgebrasL(Cr)andL(Dr)inthesensethattheirLaxmatricescanberealizedintermsofthec=0representationsoftheaffineLiealgebrasCr(1)andDr(1)andtheinteractionspatterninvolvedbearsthetypicalcharactersofthecorrespondingrootsystems.WepresenttheequationsofmotionandtheHamiltonianstructure.Thesegeneralizedsystemscanbeidentifiedunambiguouslybyspecifyingtheunderlyingloopalgebratogetherwithanorderedpairofintegers(n,m).Itturnsoutthatdifferentsystemsassociatedwiththesameunderlyingloopalgebrabutwithdifferentpairsofintegers(n1,m1)and(n2,m2)withn2<n1andm2<m1canberelatedbyanestedHamiltonianreductionprocedure.Forallnontrivialgeneralizations,theextracoordinatesbesidesthestandardTodavariablesarePoissonnon-commute,andwheneithernorm≥3,thePoissonstructurefortheextracoordinatevariablesbecomessomeLiealgebra(i.e.theextravariablesappearlinearlyontheright-handsideofthePoissonbrackets).Inthequantumcase,suchgeneralizationswillbecomesystemswithnoncommutativevariableswithoutspoilingtheintegrability.