简介:传统基于Gabor滤波器的SAR目标识别方法根据图像全局特征进行目标识别,忽略图像局部纹理特征,容易受到噪声因素的干扰,获取的SAR目标识别结果精确度较低。因此,提出基于图像局部纹理特征的SAR目标识别算法,对SAR图像纹理特征进行提取,提取SAR图像纹理特征时,采用优化的TPLBP特征描述器提取图像局部纹理特征,获取TPLBP局部纹理特征向量;通过基于ELM分类器的SAR目标识别算法,对TPLBP局部纹理特征向量进行SAR目标分类与识别,获取理想的SAR目标识别结果。实验结果表明,所提方法在SAR目标识别方面具有准确率高、误判率低的优势。
简介:特征提取是合成孔径雷达目标识别关键技术与核心任务。为了更好地提取目标特征,稀疏约束将被添加在非负矩阵分解法中,并应用于图像目标特征提取,通过利用稀疏约束的非负矩阵分解方法对sAR目标图像进行分解,构建具有稀疏性的目标特征矢量,提高了特征矢量的类内相似性与类间差异性。利用基于支持向量机的分类方法对MSTAR数据进行目标识别试验,试验结果表明,添加稀疏约束的NMF方法与PCA、ICA以及一般NMF特征提取方法相比,能够显著提高目标识别的稳定性和准确率。
简介:在对现有的山脊线和山谷线的提取算法进行分析、研究的基础上,根据基于等高线-次性构建Delaunay三角网模型算法中数据结构的特点,提出了一种等高线地形特征提取的简易算法,并在VisualC++编程环境下对本文中的算法进行了编程与实现.实验结果表明,用该算法所提取的山脊线和山谷线与实际地形相符合.
简介:极化是雷达目标具有的特性之一。以电磁散射计算仿真的圆锥形弹头模型、球形和圆柱形诱饵模型为研究对象,在极化不变量理论基础上对这些简单目标的极化特性进行了试验分析研究,提出了一种新的组合极化不变量特征(功率矩阵迹与行列式的比值)用于雷达目标识别,并给出了其对应实际的物理意义。文中以SVM为分类器,提出基于功率矩阵迹、去极化系数和功率矩阵迹与行列式的比值特征进行分类识别,结果表明,该方法可以有效地将弹头和诱饵进行分类识别。