简介:根据2010年8月10日12时至8月12日12时在呼兰地区连续48小时观测得到的移动x波段全相参多普勒天气雷达的数据,讨论了该移动雷达在两个方面的应用情况:一是根据移动雷达观测150km范围内得到的回波进行全方位跟踪、识别;二是对该移动雷达观测结果在强度场、速度场以及回波高度、回波位置与距离30km的c波段3830新一代天气雷达观测结果进行分析,并总结了其各方面的应用效果。
简介:机载激光雷达(LiDAR)是一种新型数据获取手段,目前在林业资源管理、森林防火、林木砍伐等方面已广泛应用,但尚未形成完整的、实用的林业LiDAR数据分析与处理系统。通过分析已有LiDAR数据应用于林业资源管理方面的理论和方法,以目前开源LiDAR点云数据处理技术、海量点云数据可视化技术,以及GIS相关分析技术为基础,结合林业资源管理需求,设计并研发了基于LiDAR数据的林业资源数据分析与处理系统。系统实现了Li-DAR点云数据的管理与可视化、数字高程模型生成、数字地表模型生成、冠高模型生成、平均树高估计等功能,为基于LiDAR数据的林业资源管理提供统一的平台。
简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。