简介:Schuler振荡阻尼技术是提高惯导长期工作精度的关键技术之一。针对采用低阶阻尼网络的惯导系统抑制高频和低频参考速度误差难以兼顾的问题,基于互补滤波思想,提出一种高阶水平阻尼网络设计方法。将两个采用低阶网络、分别具有优良高频和低频特性的Schuler回路通过一对互补滤波器进行组合,形成双Schuler回路组合系统。它等效于采用某高阶网络的单Schuler回路,该回路对高频和低频参考速度误差的衰减率可同时达到40dB/10deg或更高。计算机仿真和海上试验结果均表明:采用所设计高阶网络的系统对参考速度误差兼有优良的高频和低频滤波特性,综合滤波性能优于采用低阶阻尼网络的系统,具有工程应用价值。
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:GEO卫星在导航系统中发挥着基本导航、增强和转发等三大功能。针对北斗系统GEO卫星的特殊性和兼容性,对北斗GEO卫星播发的D2导航电文的特点进行了分析,利用GEO的静地特性在基带信号处理中应用数学思想提出了基于二次函数逼近的快速牵引,推导了GEO卫星位置速度的计算公式,提出了基于模糊控制的GEO伪距测量算法,提高了信号处理通道的通用性和兼容性。对相关算法和策略在基于DSP+FPGA的软件接收机中利用实际信号进行了验证,在省略精捕获时间的情况下实现了50Hz以下的多普勒频移精度,伪距测量方法的通用性节省了50%的资源和工作量,相关算法具有良好的实用价值。
简介:地磁异常场的强度在空间上变化丰富而在时间上很稳定。对地磁异常值与位置之间的非线性函数关系进行了随机线性化,将地磁异常测量值直接作为观测量,采用扩展卡尔曼滤波技术实现地磁异常测量信息与惯性导航信息的融合,估计并校正了惯性导航系统导航误差.仿真表明,组合导航系统具有如下良好性能:对地磁异常具有广泛的适用性;对初始位置误差、速度误差及姿态误差具有较好的鲁棒性;对地磁数据噪声敏感度较低;可实时更新组合导航信息.将观测量选为参考数据测量值的信息融合策略引入惯性/地磁组合导航。定量描述地磁异常辅助惯性导航系统的信息量,分析组合导航系统对地磁图的适用性.
简介:为给GPS软件接收机的跟踪环提供精确的初始条件,捕获后得到的载波频率应在几十Hz范围内,所以必须寻找一种既能精确测量载波多普勒频移,又能有较快运算速度的方法。针对这一特点,提出了一种载噪比较高时采用相位测量和较低时采用长相干处理的载波频率精确估计策略。利用Matlab仿真产生的卫星中频数据作为数据源对该策略进行验证,结果表明当输入信号的载噪比大于35.5dB·Hz的时候,相位测量算法得到的多普勒频率值的误差保持在约10Hz之内。对于微弱信号的捕获,如果将相干处理的时间从200ms扩展到600ms,捕获频率的误差从3Hz减小到0.5Hz。此外,与传统的FFT方法相比,该方法的加法和乘法运算量分别降低了96.2%和35%。测试结果体现了该算法的有效性和优越性。