简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构的重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法的效率与精度难以满足实际应用需求.为提高小麦叶片数检测的准确性,设计了一种复杂大田环境下高效识别小麦叶尖的算法.[方法]本研究以手机和田间摄像头获取的可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期的小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境的干扰,提高模型对小麦叶尖轮廓信息的提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖的识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出的方法对小麦叶尖的识别精确率和mAP...
简介:摘要 : 冠层光截获能力是反映作物品种间差异的重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同的小麦品种在 5个生育期的三维冠层场景,记录了从原始冠层结构中提取的绿色叶面积指数( GAI)、平均倾角( AIA)和散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟的激光雷达( LiDAR)模拟实验,生成了对应的三维点云数据。基于模拟的点云数据提取了其高度分位数特征( H)和绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF和 H+GF)输入到 FIPARdif、 GAI和 AIA的反演模型。结果表明,对于 GAI、 AIA和 FIPARdif,预测精度从高到低对应的点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性的估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif和 GAI的估算均获得了满意精度, R2分别为 0.95和 0.98,而 AIA的估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法的实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发的能力,展示了高通量 LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力。