简介:
简介:吉林油田应用地化录井参数直接评价法和图版法进行油、水层评价取得了一定的效果,但由于实际应用过程中,出现了依据地化检测数据解释上的误判,导致解释符合率较低。针对上述情况,该文提出了应用神经网络技术进行地化解释的方法,系统介绍了该技术在吉林油田的应用情况,尤其是低测值油层和高测值水层的应用效果较好,实践表明引入神经网络识别技术后其解释符合率得到了较大的提高。
简介:通过实例介绍了利用一种概率神经网络技术预测储层物性参数的方法.该方法克服了传统方法的某些局限性,预测储层物性参数时不需要地震子波;而是直接建立测井曲线和地震属性的关系,用相关系数衡量目标测井曲线和地震属性之间的相似性;用逐步递归法选取最佳属性;用交互验证法监视所选属性的可靠性.
简介:介绍利用计算机提取测井曲线形态特征的方法,研究了根据测井曲线形态特征识别岩性和沉积环境的人工神经网络(ANN)模型,并在SUN工作站上建立了相应的计算机程序。应用结果表明,用ANN模型识别岩性和沉积环境是可行的,并有较好的符合率。
杀菌/渗透性增大的蛋白(BPI)复配物
神经网络识别技术在地化录井中的应用
概率神经网络技术在油气藏物性参数预测中的应用
利用人工神经网络技术根据测井曲线形态特征识别沉积环境