简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.
简介:针对四旋翼无人机鲁棒自适应飞行问题,提出了一种基于指数收敛的控制方法。考虑到四旋翼系统的欠驱动、强耦合等非线性特性,采用线性化反馈控制策略实现对其轨迹追踪飞行能力的基本控制;针对线性化反馈控制易受系统内外部未知干扰等影响,采用基于指数收敛干扰观测器组合控制设计,实现四旋翼飞行的鲁棒与自适应控制;线性反馈及状态观测器控制系统基于指数收敛稳定。进行了仿真分析,结果表明,干扰观测器对四旋翼系统中存在的未知干扰具有很好的估计能力,所设计的基于指数收敛控制系统,结构简单,且具有较强的干扰抑制能力和较高的系统稳定性,满足四旋翼无人机的鲁棒及自适应飞行能力要求。
简介:针对四旋翼无人机轨迹追踪问题,提出了一种基于扩张状态观测器的鲁棒滑模控制方法。考虑无人机系统受到内外部扰动、线速度未知等不确定性影响,通过引入扩张状态观测器,对系统不确定因素进行实时估计并给予补偿,实现了系统对扰动的鲁棒性和对环境的高度适应性。同时,滑模控制通过引入切换函数来消除干扰及不确定项,但较大的切换增益会引起系统颤振,因此,干扰和不确定项是颤振的主要来源,利用扩张状态观测器来估计干扰及不确定项并加以补偿,消除了颤振。利用Lyapunov理论,证明了控制系统的稳定性。系统仿真实验结果表明,所提出的控制方法能够保证四旋翼无人机轨迹追踪的鲁棒性,旋翼转速最大跳变幅值降低86.4%-94.5%,提高了系统稳定性。