学科分类
/ 1
5 个结果
  • 简介:传统上,有限差分的差分系数一般可以通过泰勒级数展开法或优化方法来极小化频散误差得到。基于泰勒级数展开的差分法在有限的波数范围内精度较高,但在这个范围之外会产生较强的数值频散;基于最小二乘的优化有限差分法能在更大的波数范围内达到较高的精度,并可以在较小的计算需求内获得全局最优解。本文将基于最小二乘的优化有限差分法从二维正演模拟推广到三维,形成了计算效率高、高精度范围宽、适合并行计算的三维声波优化有限差分方法。频散分析及正演模拟表明本文发展的有限差分方法可以很好地压制数值频散。最后,将本文发展的有限差分方法应用到三维逆时偏移的震源波场延拓和检波点波场延拓中,并结合有效边界存储策略与checkpointing技术在GPU集群上实现三维逆时偏移以提高计算效率、减少存储量。三维逆时偏移试算结果表明本文三维优化有限差分方法与传统的有限差分法相比可以获得更高精度的偏移成像结果。

  • 标签: 三维声波方程 优化有限差分 正演 逆时偏移
  • 简介:常规的重力梯度法对地质体位置划分很模糊,当深度越大,地质体越小时,对Vzz和Vzx求导的误差也越大,导致结果与实际偏差很大。本文提出状态判别因子对角点位置进行优化确定,比常规高阶重力导数法更精确,使重力梯度法在对小地质体和断裂上有更好的分辨率,理论模型试算和实际资料处理效果很好,为找矿或划分地下地质体产状提供了更有利的依据。

  • 标签: 高阶重力导数 重力梯度法 状态判别因子
  • 简介:频率-波数域单程波算子能高效地模拟地震波在复杂介质中的传播,但是在描述波的大角度传播和速度横向扰动变化较大介质中传播的问题时仍然存在一定误差。这类误差是由于对单平方根算子使用Taylor展开式的近似程度不足所造成。为了进一步提高泰勒展开式的精确性,本文提出一种利用粒子群智能算法优化级数展开系数的高阶广义屏算子对单平方根算子的展开级数进行优化处理。新的偏移算法能在保持单程波偏移算法高效的前提下进一步提高偏移算子在大角度的成像精度和对强横向速度变化介质的适应性。通过脉冲响应实验,验证了基于粒子群算法优化级数的高阶广义屏算子能够提高常规的高阶广义屏算子的成像精度和成像角度。根据对二维SEG/EAGE盐丘模型的成像处理,基于粒子群算法优化级数的高阶广义屏算子对盐丘下面的断层取得了更高质量的成像,说明粒子群优化级数的高阶广义屏算子比常规的高阶广义屏算子具有更好的横向速度适应性。为了检验本文所提算法对实际资料的处理能力,我们利用常规的偏移处理技术和本文所提算法对一条海上二维数据进行了偏移成像处理,对比分析成像剖面发现本文所提算法描述了更加清晰的层位信息和更高质量的偏移剖面。本文所提算法能有效提高高阶广义屏偏移在广角度成像的能力,具有一定实际应用价值。

  • 标签: 粒子群智能算法 高阶广义屏算子 TAYLOR级数 偏移成像 单程波算子
  • 简介:常规长排列非双曲动校正公式是在VTI介质中得到的,它不能满足任意空间取向TI(ATI)条件下的扩展.本文以VTI介质中非双曲动校正公式为基础,基于我们推导得出的ATI介质中精确四次时差系数解析解和NMO速度解析解,给出ATI介质中长排列优化的非双曲动校正公式.通过与各向异性射线追踪方法计算所得出的"精确走时"结果对比,研究表明优化后的非双曲动校正公式能精确地描述任意强弱、ATI介质中随测线方位变化的走时曲线,可以用来替代耗时、多偏移距、多方位的射线追踪方法正演拟合ATI介质中长偏移距反射走时,为利用非双曲时距的各向异性参数反演提供理论基础性认识。

  • 标签: TI介质 任意空间取向 非双曲动校正公式 反射时距 长偏移距
  • 简介:频率空间域地震波数值模拟具有独特的优势:可以同时模拟多源的波传播、每个频率之间独立并行地计算、计算频带选择灵活、不存在累计误差、容易模拟粘弹性介质中地震波传播。但是该方法的最大瓶颈是对于计算机内存的巨大需求。我们使用压缩存储系数矩阵的方法,极大地减少了计算机内存的需求量。同时为了减少短差分算子的数值频散,引用了频率空间域25点弹性波波动方程的差分格式,并使用了最小二乘意义下求出的优化差分系数。为了克服边界反射,采用了最佳匹配层吸收边界条件。数值模拟试验证明:用压缩存储系数矩阵及优化差分系数的频率空间域25点差分格式进行弹性波正演模拟,可以减少数值频散,提高计算精度。使用较大的网格间距,降低计算机内存需求,并保持较高的计算效率。该正演方法为后续弹性波偏移和弹性参数反演提供较好的基础。

  • 标签: 压缩存储 频率空间域 25点有限差分 优化系数 PML边界条件