简介:为了提高扩展的二元相移键控(EBPSK)接收机的检测精度,设计了一种基于改进粒子群算法(IMPSO)和BP神经网络的EBPSK检测器.首先,阐述了EBPSK调制特征及冲击滤波器的特殊滤波机理.然后,提出了基于logistic混沌扰动和Cauchy变异的改进粒子群算法,并利用IMPSO—BP神经网络设计了EBPSK检测器模型.最后,对IMPSO-BP检测器进行了仿真,并分别与自适应门限判决、BP神经网络和PSO—BP检测器进行了对比.仿真结果表明:基于IMPSO—BP神经网络的EBPSK检测器检测效果要明显好于其他3种检测器.
简介:无线传感器网络部署的成功取决于是否能够在其诸如数据的精确性、数据聚类程度以及网络生命周期最大化等问题上,提供一个高质量可靠的性能服务。其中,数据融合机制就特别具有挑战性。如果将一小部分低质量的数据作为数据融合输入,那么极可能对整个数据融合结果产生负面影响。该文提出了改进型分批估计和BP神经网络相结合的多传感器数据融合方法,旨在提高网络的服务质量并减少整个网络的能量消耗。该方法能够辨别和剔除低质量的终端数据,提高数据的精确性;同时,它还能够融合冗余的数据,以减少各站点之间的数据通信消耗,使网络生命周期最大化。通过MATLAB实验仿真,表明该文提出的方法具有良好的数据融合性能;相比于LEACH,有效减少转发数据包量,提高了网络生命期。