简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的GaussVonMises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。
简介:基于微喷三维打印机制造压力传感器,用于可穿戴的个人导航系统中。在基底表面不规则或者使用中经常被折弯的情况下,微喷打印工艺制备的MEMS器件精度更高,性能更好。研究了器件的可打印模型和工艺,给出压力传感器可打印的分层物理结构;研究了平面结构投影到三维基底上的投影空间,基于Terzopoulos弹性模型使用材料弹性度和结构弹性度模型给出投影空间;使用射线投影NURBS曲线来拟合边界轮廓,给出分层切片模型。为验证打印PZT膜的压电性能以及设计的压力传感器件的功能,使用不同的机械负荷测试其刚度,使用不同的直流偏置来测试耗损因数、品质因数等。通过比较实验对象的测量值和理论预测值之间的关系可以看出,打印的压力传感器薄膜具有很好的机械和电气性能。
简介:文章首先采用单相浮阻力模型对不同加速度下Rayleigh-Taylor不稳定性诱发的物质渗透边界的演化过程进行了计算,揭示了该混合在常加速度和变加速度情况下不同的发展规律,并通过与实验结果的比较分析,验证了该模型的适用性.在此基础上,发展了多相浮阻力模型,采用该模型对常加速度情况下含尘气体中的RayleighTaylor不稳定性诱导混合进行了研究,发现混合区宽度随着颗粒数密度和颗粒尺寸的增大而减小,揭示了气体中所含杂质抑制混合发展的规律.
简介:传统的应用稳定性理论对横流不稳定性转捩现象的预测很难与现代CFD并行化计算结合,为了解决这个问题,文章基于SA-γ-—Re_(θt)转捩模型,使用不可压三维边界层相似性解实现横流位移损失厚度Reynolds数在流场中的当地化求解,结合亚音速试验数据-C1准则构建横流不稳定性转捩判据,从而实现了横流不稳定性转捩预测方法的当地化并行求解.首先采用SA-γ-—Re_(θt)转捩模型对NLF(1)-0416翼型进行了流向转捩预测,证实了该模型的正确性.然后应用所建立的横流转捩模型对45°前缘后掠角的NLF(2)-0415无限展长机翼和DLR-F5机翼,以及标准6∶1椭球标模进行了横流不稳定转捩数值模拟,计算结果显示转捩位置均与试验数据吻合较好,证明了文章所建立的方法在不可压边界层转捩预测具有较高的预测精度.