简介:针对磁悬浮飞轮储能系统的“磁悬浮飞轮一发电机”机电耦合非线性动力学特性进行研究.通过推导磁悬浮飞轮储能系统在偏心条件下的动能、势能、发电机系统的磁场能以及系统的耗散函数,由Lagrange—Maxwell方程建立磁悬浮飞轮系统和两相四极永磁发电机系统的机电耦合动力学方程.采用数值法对0.6MW磁悬浮飞轮储能系统进行了仿真分析,研究结果表明,系统机电耦合非线性方程存在稳定的与转速同频的基频和三倍频周期运动解,且基频振动幅值比三倍频振动幅值大.对于稳定的磁悬浮储能飞轮机电耦合系统,飞轮转速增大,或磁轴承系统刚度减小或阻尼增大,或磁场能(电枢反应磁场能或永磁励磁磁场能)减小,可使系统的非线性振动幅值减小.而增大磁轴承系统的刚度,或减小磁轴承系统的阻尼,或增大系统的磁场能有可能破坏机电耦合系统的稳定性,使飞轮失稳.
简介:基于压电效应设计了一种包含屈曲梁、质量块和非线性弹簧的新型压电俘能器结构,并对其进行了振动响应分析.首先基于Euler—Bernoulli梁理论,利用Hamihon原理建立了压电俘能器结构的非线性动力学方程,通过Galerkin离散后数值分析了结构参数对系统一阶固有频率的影响;进一步利用多尺度法对系统进行摄动分析,研究了系统的稳态幅频特性,数值分析了各系数对幅频响应曲线的影响,结果表明该结构在简谐激励作用下会存在多种跳跃现象;最后数值分析了压电俘能器的发电性能,讨论了激励幅值和初始静挠度对发电电压的影响.
简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.