简介:基于轻质、高强和耐磨等诸多优势,铝基碳化硼复合材料已成为集结构/功能一体化的新型材料。本文采用粉末冶金及轧制方法,制备出厚度3.5mm、碳化硼质量分数为33%的B4C/Al复合材料板材,并对其疲劳性能和断裂机制进行分析。在1×107循环次数下,铝基碳化硼复合材料板材的疲劳强度达到110MPa。采用SEM对疲劳断口进行观察,结果表明B4C/Al复合材料疲劳断口可清楚的看到裂纹的萌生、扩展和失稳断裂的典型特征,但存在多种形式的疲劳启裂源。疲劳裂纹扩展路径取决于裂纹尖端塑性区的半径和B4C颗粒的间距大小,当增强颗粒的间距小于塑性区半径时,裂纹主要沿着颗粒的连接界面或断裂的碳化硼颗粒扩展,当增强颗粒的间距大于塑性区半径时,有利于裂纹尖端钝化,减缓裂纹的扩展和方向改变。
简介:采用粉末冶金快速热压法制备B4C/Al中子吸收材料,对其进行T6态热处理,通过对材料的密度、硬度与抗弯强度等性能的测试以及材料微观组织、物相组成和弯曲断口形貌的观察与分析,研究成形压力、热压压力与温度以及B4C颗粒含量的影响。结果表明,B4C/Al复合材料的物相组成为Al和B4C;B4C颗粒均匀地镶嵌在基体中,颗粒与基体结合紧密。材料密度随压制压力增加而增大,随B4C含量增加而降低,在热压压力和温度共同作用下,铝合金液充分填充压坯孔隙从而实现高致密。当B4C的质量分数为30%时,在150MPa预成形压力下压制、530℃/10MPa条件下热压后所得B4C/Al复合材料的相对密度最高,达到99.87%,断裂方式为韧性断裂。经T6态热处理后,硬度HB和抗弯强度均提高,分别达到123.49和394.117MPa,断裂方式转变为脆性断裂。
简介:采用Al-5Ti-B变质剂对过共晶Al-18Si合金进行反向变质处理,用光学显微镜观察合金的组织与形貌,研究变质剂加入量、变质温度和冷却速度对初晶硅的尺寸、形态和面积分数以及共晶组织的影响。研究表明:当Al-5Ti-B加入量(质量分数)为0.3%时,变质处理后Al-18Si合金中的初晶硅和共晶硅尺寸明显减小,初晶硅的面积分数减小;与其相比,变质剂加入量增加到0.6%时,初晶硅尺寸变化不明显,但共晶硅进一步细化;随冷却速率降低,变质处理后Al-18Si合金中初晶硅相的数量减少,但Si颗粒尺寸明显增大,并且共晶硅细化;与Al-18Si合金在720℃变质相比,该合金在780℃变质处理时,初晶硅的尺寸增大,但初晶硅的面积分数显著减小;合金在850℃变质处理后初晶硅的尺寸、面积分数都比720℃变质处理后明显减小;随变质温度升高,Al-Si合金中的共晶硅明显细化。
简介:采用DH.2080型超音速等离子设备将粒度53~106lam的高铝铜合金粗粉喷涂到45”钏表面制备涂层。在高铝铜合金粉术中加入微量元素Ce和B,研究Ce和B对高铝铜合金粗粉的超音速喷熔性能以及涂层组织结构的影响。结果表明:末加入元素Ce和B的涂层氧化严重,尤其是在界面处聚集大量氧化物,涂层和基体不能实现有效结合,涂层中较多的氧化物和孔隙隔离层流片熔结,并且涂层成分偏析严重。加入微量稀土元素Ce和B后,喷熔层组织细小均匀,成分分布均匀,涂层氧化程度大大减小,涂层和基体结合良好。Ce和B的加入还可改变涂层组织相的彤成规律,即由原来的非平衡结晶方式转变为平衡结晶方式。此外,Ce和B的加入使涂层硬度由362HV提高到432HV。
简介:通过电化学分析与测试,研究B4C体积分数分别为20%、30%、40%的B4C/Al基复合材料及其基体合金(6061铝合金)在不同浓度及不同温度的硫酸溶液中的腐蚀行为。由动态极化曲线和阻抗谱得到相应的电化学参数,并利用阻抗分析软件对该复合材料和基体合金腐蚀过程的等效电路进行模拟,分析腐蚀机理,通过Arrhenius方程计算腐蚀过程中B4C/Al基复合材料与6061铝合金的反应活化能,并分析两者的焓变与熵变,对腐蚀前后2种材料界面的微观结构进行观察。结果表明:B4C/Al基复合材料在硫酸溶液中的腐蚀速率随B4C颗粒含量增加而增大,基体铝合金在硫酸中的耐腐蚀性能高于B4C/Al基复合材料。B4C/Al基复合材料和基体铝合金在硫酸中的腐蚀速率都随硫酸溶液浓度增加而增大;当溶液温度升高时,二者的腐蚀速率都快速增加。B4C/Al基复合材料和Al基体合金在硫酸溶液中的腐蚀都表现为明显的点蚀。铝基体材料在硫酸溶液中的反应活化能大于B4C/Al基复合材料,计算所得活化焓与活化熵的值均表明复合材料的腐蚀反应比基体合金更容易进行,因而遭受腐蚀更严重。