简介:WeputforthDramaTheoryⅡ(DTⅡ)asaformalmultipleparticipantdecisionmakingframeworkthatcanbeusedtosystematicallymodelcomplexsecuritychallenges,andadvancethefieldofSustainableSecuritySystemsEngineering.DTⅡisdefinedasatheoryof'largeworld'pre-gamecommunicationandequilibriumselection.Whilegametheoretictoolshavebeenwidelyappliedtoresolveenvironmentalconflictsandpromoteglobalsecurity,traditionalgametheoryassumesthatdecisionmakers,options,andpreferencesarefixed.Amathematicaltreatmentofkeydramatheoreticconcepts(i.e.positions,intentions,doubtsanddilemmas)isprovided.Thedynamicsofthedramatheoreticprocessarediscussedandtheexpectedequilibriumsetisderived.Thefundamentaltheoremofdramatheoryisprovenandalltheoreticalresultsareappliedtopromotesustainablesecuritysolutions.ItisemphasizedthatDTⅡrepresentsaflexiblesystemsengineeringtechniquetoaddresstime-sensitive,multi-faceted,andcomplexmultipleparticipantnegotiations.
简介:我们与州依赖者的到达和一般服务分发学习一个单个服务者的排队系统,或简单地M(n)/G/1/K,在服务器跟随一条N政策并且当系统是空的时,度多重假期的地方。我们用增补可变技术提供一个递归的算法数字地计算系统的静止队列长度分发。唯一的输入要求是服务时间分发的Laplace-Stieltjes变换,假期时间分发,和州依赖者的到达评价。算法的Thecomputational复杂性是O(K~3)。