简介:一、填空(每空2分,共30分)(1)在△ABC中:∠C=90°,a=12,b=9,则sinA=,ctgA=.(2)在△ABC中,∠C=90°,sinA=45,AB=10,那么BC=,cosB=.(3)已知cos54°36′=0.5793,查表求得同一行中它的修正值是5,则cos54°34′=.(4)用“<”号连结下列各数:sin30°,tg45°,ctg90°,cos45°,ctg60°,cos30°:.(5)化简:(sin60°-1)2+|1+cos30°|=.(6)在△ABC中,∠B是锐角,sinB=22,则∠B=.(7)在Rt△ABC中,∠C=90°,sin(90°-A)=34,则cos
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:在多维流体动力学计算中,流体运动和计算网格的关系可以分为两种情况。一是Lagrangian方法,即网格跟随流体运动;二是Eulerian方法,即流体流过固定;下动的网格。一般计算网格的运动是任意的。这就对应于任意Lagrangian—Eulerian(ALE)方法。ALE方法的核心是通过调整网格运动,使得数值模拟的精度、效率有所提高。它的主要步骤是:显式Lagrangian步;网格重分,即得到新的计算网格;物理量重映,即将Lagrangian步的计算结果变换到新网格上。在这3步中,较少研究网格重分。数值模拟和网格重分的一个基本前提是网格是合理的,或者说网格不能发生翻转,网格应当是凸的。而Lagrangian步数值模拟会造成网格扭曲,因此在网格重分前进行网格解扭是十分必要的。文中描述了通用的网格解扭、重分算法,使得解扭、重分后的网格有较好的几何品质,同时尽可能接近Lagrangian网格。
简介:在锥序Banach空间中引入了集值映射ε-严有效意义下的广义梯度.在连通性条件下,利用凸集分离定理证明了该广义梯度的存在性.作为应用,给出了用广义梯度刻画集值优化问题ε-严有效解的充分和必要条件.
简介:本文给出了Benjamin-Ono方程的孤立波解,并应用M.Grillakis[4,5]等的抽象理论,通过谱分析,证明了该孤立波解是轨道稳定的。