简介:<正>为加强农药管理,逐步削减高毒农药的使用,保护人民生命安全和健康,增强我国农产品的市场竞争力,经全国农药登记评审委员会审议,我部决定撤销甲胺磷等5种高毒农药混配制剂登记,撤销丁酰肼在花生上的登记,强化杀鼠剂管理。现将有关事项公告如下:一、撤销甲胺磷等5种高毒有机磷农药混配制剂登记。自2003年12月31日起,撤销所有含甲胺磷、对硫磷、甲基对硫磷、久效磷和磷胺5种高毒有机磷农药的混配制剂的登记(具体名单由农业部农药检定所公布)。自公告之日起,不再批准含以上5种高毒有机磷农药的混配制剂和临时登记有效期超过4年的单剂的续展登记。自2004年6月30日起,不得在市场上销售含以上5种高毒有机磷农药的混配制剂。二、撤销丁酰肼在花生上的登记。自公告之日起,撤销丁酰肼(比久)在花生上的登记,不得在花生上使用含丁酰肼(比久)的农药产品。相关农药生产企业在2003年6月1日前到农业部农药检定所换取农药临时登记证。三、自2003年6月1日起,停止批准杀鼠剂分装登记,已批准的杀鼠剂分装登记不再批准续展登记。
简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视和广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性和检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质和特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感和光谱传感等常用传感分析技术和器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗和三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备和修饰技术扔需要进一步提升,多目标、高通量纳米传感器件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。
简介:[目的/意义]区块链本质上是一个共享数据库,存储的数据是不可篡改、公开和透明的,应用在农产品供应链上可以提高产品透明度,吸引更多的消费者,但也会存在消费者隐私担忧问题.消费者的隐私担忧程度影响着农产品零售商对于是否售卖区块链溯源农产品的决策.通过研究区块链溯源对农产品零售商竞争策略、定价和最优决策的影响,零售商可以根据自己的市场情况制定市场竞争策略,提高自己的竞争力,优化农产品供应链.[方法]基于纳什均衡及Stackelberg博弈理论,建立初始农产品零售商与新进零售商的价格博弈模型,研究分析农产品零售商之间的竞争决策,利用区块链智能合约技术将博弈过程以及对应情况写入智能合约,保障合作博弈有效进行,将博弈结果上链来规范博弈双方的合作行为.[结果和讨论]消费者隐私担忧问题会影响农产品的价格和利润.此外,通过对两家农产品零售商均衡策略..
简介:摘要 : 目前,针对蜂群发生崩溃式消失的现象还缺乏有效的观测和分析手段。本研究在分析蜂群行为与检测特征的基础上,设计了一种基于物联网技术的蜂群多特征长期监测系统。该系统采用太阳能供电,融合了多种传感器,能够检测蜂群的多个特征(蜂箱内部的温度、湿度、蜂群重量、声音和蜜蜂的进出量),并利用无线数据同步传输技术将这些数据上传到远程云服务器中。基于该系统,本研究还进行了针对意大利蜜蜂从 2018年秋季到 2020年春季为期 235天的长期连续监测试验,记录了蜂群在秋衰期、越冬期和春繁期蜂箱内部温度、湿度、蜂群重量、声音和进出量的逐小时的细致变化。试验结果表明,在此期间,蜂箱内的平均温度呈现从 25℃下降到 -5℃再回升至 15℃的抛物线变化,相应的进出巢次数也由大约 8万次 /天减少至 0次 /天再增加至 5万次 /天。在越冬期中,蜂群的重量呈现出大约 25 g/天的线性下降趋势,同时蜂箱内也更为安静,声音的频率集中于 0~64 Hz。由此表明,在不干扰蜂群的情况下,该监测系统获得的特征数据能够有效地揭示蜂群的日常活动和趋势变化,可用来研究蜂群的行为生物学、探索崩溃式的蜂群消失成因以及发展精确化蜜蜂养殖业。
简介:[目的/意义]大规模肉羊畜舍人工消毒存在费时费力、覆盖不全和消毒不彻底的问题,为保持畜舍卫生和肉羊健康,本研究提出一种羊场自动导航喷药机器人.[方法]从硬件、语义分割模型和控制算法3个方面设计了自动导航喷药机器人.硬件部分包括履带底盘、摄像头和折叠式喷药装置.语义分割模型部分通过引入压缩通道网络注意力(Squeeze-and-Excitation Network,SENet)和基于场景改进的十字交叉注意力(Criss-Cross Attention,CCA)模块,提出一种双注意力ENet语义分割模型(Double Attention ENet,DAENet).在控制算法方面,针对机器人在面对岔路时无法控制行进方向的问题,利用模拟真实道路的方法,在羊舍外的道路上绘出车道线,提出了道路中心点识别和车道线中心点识别两种算法来计算机器人行进过程中的导航点.为了实现上述两种算法,使用了两台摄像头并设计了摄像头切换算.