简介:摘要:随着我国电网逐步自动化,当今各地区电力网的建设改造基本完成。采用智能电网大大提高了当地供电的可靠性。配电自动化在故障精度、故障隔离、故障排除、报警等应用中更为明显。目前,我国已采用各种方式进行数据收集、数据传输、数据处理等,对微电网、分布式电源等配电网进行在线监测和管理。由于安全性以及电力和通信等行业的特殊要求,需要全天候不间断电源。因此,近年来不断发展的技术包括不间断电源(ups)、风扇、铅和锂离子电池。当前,配电装置使用多个电池缓冲区作为外部备用电源。正常电源具有内置220v电源,在电源出现故障时可快速接通外部电源,以确保系统电源的安全性和可靠性。
简介:摘要:随着电力的发展,不仅出现了以六氟化硫为绝缘介质的GIS、断路器、流变、压变、变压器,而且也出现了以六氟化硫为绝缘的变压器套管,如果套管和主变之间的密封件破损,压力高的六氟化硫气体将进入变压器本体中,导致变压器的瓦斯动作,甚至喷油的现象,严重影响设备的正常运行。通过检测变压器绝缘油中的六氟化硫含量可以监督套管和主体的密封性;另外,变压器分接开关和本体的密封不严,导致色谱数据异常的绝缘油向本体渗透,严重影响了变压器绝缘油中溶解气体组分的检测和监督,有些单位尝试通过在开关室的绝缘油中添加一定的六氟化硫气体作为示踪气体,用以监督分接开关与本体的密封性。所以对绝缘油中溶解六氟化硫气体含量的检测对于监督套管、开关与本体密封件的密封性有十分重要的作用。
简介:摘要:现阶段,我国电力行业发展进入技术变革的关键时期,电压等级要求也不断提高。同时,电压升高也容易发生变压器的局部放电现象,而局部放电产生的电流与周围介质会发生相互反应作用,产生热效应或者生成活性物质,其中最重要的问题是局部放电会加速绝缘体老化,隔热性能降低,进而引发电气事故。因此变压器局部放电检测技术的优化工作至关重要,能够有效预防事故发生。局部放电现象的出现使得周围介质形成超声波、高频辐射等效应,这也给检测技术的升级提供了方向。电力变压器是电力系统正常运行中必不可少的一个关键运行部件,运行状况与设备质量直接关系到整个电力系统的安全与稳定性。同时,电力变压器的绝缘状态又直接影响到变压器的整体运行状况,其中局部放电产生大量的电、光、声、热等的物理、化学效应,是造成电力变压器绝缘老化、变形的主要原因,进而可能由此造成不同程度的电力事故。为应对局部放电导致的变压器运行问题,近年来相关专家结合这些效应研发出了各类放电监测技术,如电脉冲法、光检测侧法、超声波法、超高频法、气相色谱法和红外热像法等,均有效地应用在了局部放电检测工作中,帮助整个电力工程正常运行。鉴于此,文章结合笔者多年工作经验,对电力变压器局部放电检测技术的现状和发展提出了一些建议,以供参考。
简介:摘要:现如今,我国经济在快速发展,电力企业也在加快发展。 保护装置定检及验收主要过程是根据装置检测要求,通过人工手动方式来对继电保护检测仪检测,然后根据检测结果逐项填写检测报告。而在现场实际检测过程中,由于继电保护标准检测报告中的检测项目种类繁多,检测结束后需要手动填写大量数据,因而增加了出错的风险;另外,继电保护检测仪很少能够做到自动校验、自动生成标准报告,需要我们根据定值和设备的类型进行大量人工操作,包括检测项目的选择,试验参数的修改等,过多的人工操作会给最终保护装置的检测结果埋下了隐患,也给现场作业带来了一定的安全风险。同时,由于检测人员理论水平、实际操作水平各不相同,而且每个人所采用的检验方法与作业流程也各不相同,因此所需的检测时间差别较大,通常现场检测所需时间较长,有时甚至可能超出预定工期,而且后续的检验数据、报告的整理输入等工作也占用了检测人员相当长的一部分时间和精力。
简介:
简介:【内容摘要】 本文主要论述了SF6气体检测试验过程中SF6气体回收处理方法。该方法能够有效地解决由于SF6气体无序排放,可能造成污染环境,甚至严重威胁现场工作人员身体健康的安全隐患。
简介:摘要:城轨柔性接触网沿线路上空架设,作为电力机车输电的供电形式,接触网系统的可靠性直接影响着列车的安全运行。在露天环境中,接触网系统容易受到地理位置和气候条件的影响,处于重雷区的接触网设备遭受雷击的频率较高,雷击不仅会损坏设备,增加运营维护的工作量和投资,还有可能直接影响城轨线路的正常运营。