简介:缅怀著名数学和数理科学家。我国函数论、数学物理和系统工程奠基人之一.纪念他的百岁诞生,回顾他在数学和数理科学的若干重要领域的开创性和奠基性工作。包括半(亚)纯函数与整函数函数理理论、准解析函数与函数逼近理论、微分方程解析理论与Minkowski-Denjoy函数理论、广义Reimann几何与混合量分析学、微分微分差分方程与算子函数论、纤维丛积分与相对性量子场论、电磁风暴说与数理地震学、外微分形式与场论、各向异性能带理论与统计岩体力学、教学模型与自动控制、学科规划与人才培养等方面的巨大贡献,诗词书画与音乐艺术等方面的天赋与造诣;缅怀他严谨的治学态度和一贯的创新精神。
简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:EfronandAmaripresentedaRiemanniangeometricframeworkforqurvedexponentialfamiliesandstudiedtheinformationlossandthevarianceoftheestimateusingthisframilies.InthispapproposearelativelyrumplegeometricframeworkinEuclideanspace.Basedonthisnewframework,westudyeonfidenceregiodsforcurvedexponentialfamilieswhichhavenotbeenstudiedbyEfronandAmari.TheresultsobtainedbyHamiltonetal.areextendedtocurvedexponentialfamilies.
简介:利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的。