摘要
Inthepost-genomicbiologyera,thereconstructionofgeneregulatorynetworksfrommicroarraygeneexpressiondataisveryimportanttounderstandtheunderlyingbiologicalsystem,andithasbeenachallengingtaskinbioinformatics.TheBayesiannetworkmodelhasbeenusedinreconstructingthegeneregulatorynetworkforitsadvantages,buthowtodeterminethenetworkstructureandparametersisstillimportanttobeexplored.Thispaperproposesatwo-stagestructurelearningalgorithmwhichintegratesimmuneevolutionalgorithmtobuildaBayesiannetwork.Thenewalgorithmisevaluatedwiththeuseofbothsimulatedandyeastcellcycledata.Theexperimentalresultsindicatethattheproposedalgorithmcanfindmanyoftheknownrealregulatoryrelationshipsfromliteratureandpredicttheothersunknownwithhighvalidityandaccuracy.
出版日期
2009年01月11日(中国期刊网平台首次上网日期,不代表论文的发表时间)