Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm

在线阅读 下载PDF 导出详情
摘要 Inthepost-genomicbiologyera,thereconstructionofgeneregulatorynetworksfrommicroarraygeneexpressiondataisveryimportanttounderstandtheunderlyingbiologicalsystem,andithasbeenachallengingtaskinbioinformatics.TheBayesiannetworkmodelhasbeenusedinreconstructingthegeneregulatorynetworkforitsadvantages,buthowtodeterminethenetworkstructureandparametersisstillimportanttobeexplored.Thispaperproposesatwo-stagestructurelearningalgorithmwhichintegratesimmuneevolutionalgorithmtobuildaBayesiannetwork.Thenewalgorithmisevaluatedwiththeuseofbothsimulatedandyeastcellcycledata.Theexperimentalresultsindicatethattheproposedalgorithmcanfindmanyoftheknownrealregulatoryrelationshipsfromliteratureandpredicttheothersunknownwithhighvalidityandaccuracy.
作者
机构地区 不详
出版日期 2009年01月11日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献