基于单词分类的归一化神经网络语言模型研究

在线阅读 下载PDF 导出详情
摘要 提出了一种基于单词分类的神经网络语言模型,以解决归一化问题。实验方法为,在基础翻译系统中加入模型参数,然后利用开发集调整参数,再对测试集进行翻译,对比加入模型参数前后的翻译质量以及训练模型和翻译过程所需时间。实验结果表明,在保证归一化的前提下,该模型的性能优于Vaswani等人的模型,且翻译质量与Vaswani等人的模型相当。
机构地区 不详
出处 《福建工程学院学报》 2016年4期
出版日期 2016年04月14日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献