Study on Segmented Correlation in EEG Based on Principal Component Analysis

(整期优先)网络出版时间:2013-03-13
/ 1
InordertoexplorethecorrelationbetweentheadjacentsegmentsofalongtermEEG,animprovedprincipalcomponentanalysis(PCA)methodbasedonmutualinformationalgorithmisproposed.Aone-dimensionEEGtimeseriesispidedequallyintomanysegments,sothateachsegmentcanberegardedasanindependentvariablesandmulti-segmentedEEGcanbeexpressedasadatamatrix.Then,wesubstitutemutualinformationmatrixforcovariancematrixinPCAandconducttherelevanceanalysisofsegmentedEEG.Theexperimentalresultsshowthatthecontributionrateoffirstprincipalcomponent(FPC)ofsegmentedEEGismorelargerthanothers,whichcaneffectivelyreflectthedifferenceofepilepticEEGandnormalEEGwiththechangeofsegmentnumber.Inaddition,theevolutionofFPCconducetoidentifythetime-segmentlocationsofabnormaldynamicprocessesofbrainactivities,theseconclusionsarehelpfulfortheclinicalanalysisofEEG.