负荷预测是电力市场技术支持系统的一个重要组成模块,对电网的安全、经济运行具有重要的意义。负荷预测主要综合考虑系统的运行特性、社会影响、自然条件以及增容决策等因素,在历史负荷数据的基础上,进行一系列数学计算,在满足一定精度要求的情况下,得出未来某特定时刻的负荷值。传统短期电力负荷预测方法易受随机因素的干扰,尤其在小水电分布众多的地区预测精度不高。文章针对短期负荷预测的特点,将数据挖掘技术引入短期负荷预测中,并给出了系统的解决方案,可应用于小水电众多的电网环境或类似环境。实例运算表明该系统可有效地提高预测精度。