基于排列熵和CHMM的齿轮故障诊断

(整期优先)网络出版时间:2015-02-12
/ 1
针对齿轮故障特征提取和状态识别困难的问题,提出一种基于排列熵和连续隐马尔可夫模型(CHMM)的齿轮故障诊断方法。首先对提取的目标齿轮啮合信号作降噪处理,再采用排列熵算法进行分析,提取排列熵均值、方均根、最大值、最小值作为特征量输入到CHMM中训练和识别,通过对比最大对数似然概率值来确定齿轮的故障。最后在变速箱齿轮故障模拟试验台上,对正常、轻微磨损、严重磨损和断齿4种齿轮状态进行试验验证,结果表明该方法能有效地对齿轮故障进行诊断。