基于深度信念网络的入侵检测模型

(整期优先)网络出版时间:2015-03-13
/ 1
研究了入侵检测系统中海量数据分类的问题.讨论了深度信念网络(DBN)的原理,提出了基于DBN的入侵检测模型.DBN由多层无监督的限制玻尔兹曼机(RBM)网络和一层有监督的反向传播(BP)网络构成.该入侵检测模型采用一种快速、贪婪的方法对DBN网络进行预训练,利用对比分歧算法逐层训练每一个RBM网络;然后,利用有监督的BP算法对整个DBN网络进行微调,并同时对RBM网络输出的低维特征进行入侵数据分类.基于KDDCUP1999数据集的实验结果表明,使用3层以上的DBN模型分类效果优于自组织映射和神经网络方法.因此,DBN是一种有效且适用于高维特征空间的入侵检测方法。