Application of regularization technique in image super-resolution algorithm via sparse representation

(整期优先)网络出版时间:2017-06-16
/ 1
Tomakeuseofthepriorknowledgeoftheimagemoreeffectivelyandrestoremoredetailsoftheedgesandstructures,anovelsparsecodingobjectivefunctionisproposedbyapplyingtheprincipleofthenon-localsimilarityandmanifoldlearningonthebasisofsuper-resolutionalgorithmviasparserepresentation.Firstly,thenon-localsimilarityregularizationtermisconstructedbyusingthesimilarimagepatchestopreservetheedgeinformation.Then,themanifoldlearningregularizationtermisconstructedbyutilizingthelocallylinearembeddingapproachtoenhancethestructuralinformation.Theexperimentalresultsvalidatethattheproposedalgorithmhasasignificantimprovementcomparedwithseveralsuper-resolutionalgorithmsintermsofthesubjectivevisualeffectandobjectiveevaluationindices.