带有科氏力的Navier-Stokes方程mild解的正则性

(整期优先)网络出版时间:2016-02-12
/ 1

带有科氏力的Navier-Stokes方程mild解的正则性

李新新

李新新青岛大学数学与统计学院青岛266071

摘要:本文研究了三维空间中带有科氏力的Navier-Stokes方程的时间周期问题,证明了当外力属于Besov空间时,方程的周期mild解的正则性.

关键词:Navier-Stokes方程;mild解;正则性

参考文献

[1]P.Konieczny,andT.Yoneda,OndispersiveeffectoftheCoriolisforceforthestationaryNavier-Stokesequations,J.DifferentialEquations,250(2011),3859–3873.

[2]Y.Giga,K.Inui,A.Mahalov,andS.Matsui,Navier-StokesequationsinarotatingframeinR3withinitialdatanondecreasingatinfinity,HokkaidoMath.J.,35(2006),321–364.

[3]IwabuchiT,TakadaR.DispersiveeffectoftheCoriolisforceandlocalwell-posednessfortheNavier-StokesequationsintherotationalframeworkNCTAMpapers,NationalCongressofTheoreticalandAppliedMechanics,Japan.NationalCommitteeforIUTAM,2012:43-43.

[4]M.Hieber,Y.Shibata,TheFujita-KatoapproachtotheNavier-Stokesequationsintherotationalframework,Math.Z.,265(2010),481–491.

[5]H.Kozono,T.Ogawa,andY.Taniuchi,Navier-StokesequationsintheBesovspacenearL∞andBMO,KyushuJ.Math.,57(2003),303–324.

[6]A.MahalovandB.Nicolaenko,GlobalRegularityof3DRotatingNavier-StokesEquationsforResonantDomains,AppliedMathematicsLetters13(2000)51--57.

[7]HideoKozono,YukiMashikoandRyoTakada,ExistenceofperiodicsolutionsandtheirasymptoticstabilitytotheNavier–StokesequationswiththeCoriolisforce,J.Evol.Equ.2014SpringerBasel,DOI10.1007/s00028-014-0228-4

作者简介:李新新,女,山东聊城人,汉族,1990.08.06,青岛大学,数学科学与统计学院,研究生,应用数学,偏微分方程理论及其应用。