学科分类
/ 1
1 个结果
  • 简介:本文证明,对任意正整数n∈N及r>1,ωn(r)=∑^∞(m-1)(1/(m+n))(n/m)^1/r≤(π/(sinπ(1-1/r)))-(θr(1)/m^1-1/r).这里,θr(1)=(π/(sinπ(1-1/r)))-∑^∞(m-1)(1/(m+n))(n/m)^1/r是使上式成立的与r有关的最大值1θr(1)>1n2-5/16=0.3806471^+.由此改进了一般Hilbert二重级数定理。

  • 标签: 级数 定理 注记 正整数 最大值 证明